Reg. No. : \square

Question Paper Code : 51318

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth/Sixth Semester
Computer Science and Engineering
080230029/080320009 - NUMERICAL METHODS

(Common to Chemical Engineering)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. State the condition for convergence of Newton - Raphson method.
2. Solve the following system of equations by Gauss Elimination method $2 x+y=3 ; 7 x-3 y=4$.
3. What is mean by Cubic spline?
4. Write down the Newton's backward interpolation formula.
5. Write down the trapezoidal rule to evaluate $\int_{1}^{6} f(x) d x$ with $\mathrm{h}=0.5$.
6. Use two point quadrature formula to solve $\int_{-1}^{1} \frac{d x}{1+x^{2}}$.
7. Find $y(0.1)$ by Euler's method given that $\frac{d y}{d x}=x+y, y(0)=1$.
8. Write the Adam - Bashforth predictor and corrector formula.
9. Write the finite difference approximations for the differential equation $y^{\prime \prime}=x+y$ with $y(0)=y(1)=0$.
10. State the Schmidt explicit formula for one dimentional heat equation.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the real root of the equation $x=\frac{1}{2}+\sin x$ by iteration method.
(ii) Using Gauss-Jordan method, find the inverse of the matrix

$$
\left(\begin{array}{ccc}
2 & 4 & 3 \tag{8}\\
0 & 1 & 1 \\
2 & 2 & -1
\end{array}\right)
$$

Or
(b) (i) Solve the system of equations by Gauss-Seidel method correct to three decimal places.
$x+y+54 z=110$
$27 x+6 y-z=85$
$6 x+15 y+2 z=72$
(ii) Using power method, find the dominant eigenvalue and eigenvector of the matrix $\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$.
12. (a) (i) Using Lagrange's formula, construct the polynomial which takes the values $f(0)=-12, f(1)=0, f(3)=6$ and $f(4)=12$. Hence, find $f(2)$.
(ii) Find y for $x=9$ by Newton's interpolation formula from the following data :

$$
\begin{array}{ccccc}
x: & 4 & 6 & 8 & 10 \tag{8}\\
y: & 1 & 3 & 8 & 16 \\
& & & \\
& \text { Or } &
\end{array}
$$

(b) (i) For the following values, construct a cubic polynomial

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 3 \tag{8}\\
f(x): & 1 & 2 & 1 & 10
\end{array}
$$

(ii) Find $f(8)$, Using Newton's divided difference from the following: (8)

$$
\begin{array}{ccccc}
x: & 3 & 7 & 9 & 10 \\
f(x): & 168 & 120 & 72 & 63
\end{array}
$$

13. (a) (i) Find $\frac{d y}{d x}$ at $x=51$ from the following table:

$$
\begin{array}{cccccc}
x: & 50 & 60 & 70 & 80 & 90 \tag{8}\\
y: & 19.96 & 36.65 & 58.81 & 77.21 & 94.61
\end{array}
$$

(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using trapezoidal rule with $h=0.02$. Hence determine the value of π.

Or
(b) (i) Using Simpson's $\frac{1}{3}$ - rule evaluate $\int_{0}^{1} \int_{0}^{1} \frac{1}{1+x+y} d x d y$ taking $\mathrm{h}=\mathrm{k}=0.5$.
(ii) Using three - point Gaussian Quadrature formula , evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$.
14. (a) (i), Using Taylor series method, compute the value of $y(0.1), y(0.2), y(0.3), y(0.4)$ correct to three decimal places from $\frac{d y}{d x}=1-2 x y$ given that $y(0)=0$.
(ii) Given $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1, y(0.1)=1.06, y(0.2)=1.12$, $y(0.3)=1.21$. Evaluate $y(0.4)$ by Milne's predictor - corrector method.

Or

(b) (i) Solve $\frac{d^{2} y}{d x^{2}}-x\left(\frac{d y}{d x}\right)^{2}+y^{2}=0$ using Runge-kutta method for $x=0.2$ correct to four decimal places, given that $y(0)=1, y^{\prime}(0)=0$.
(ii) Using modified Euler's method, find y at $x=0.1$ and $x=0.2$ given $\frac{d y}{d x}=1+x y, y(0)=2$.
15. (a) Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1, t \geq 0$ with $u(x, 0)=x(1-x), 0<x<1$ and $u(0, t)=u(1, t)=0 \forall t>0$ using explicit method with $\Delta x=0.2$ for 3 time steps.

Or

(b) Solve $4 u_{x x}=u_{t t} \quad$ with $u(0, t)=0=u(4, t), \quad \frac{\partial u}{\partial t}(\dot{x}, 0)=0$ and $u(0, t)=x(4-x)$ taking $h=1$. Compute u upto 5 time steps.

