Reg. No. : \square

Question Paper Code : 31311

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth/Sixth Semester
Computer Science and Engineering 080230029/080320009 - NUMERICAL METHODS (Common to Chemical Engineering)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Evaluate $\sqrt{12}$ by Newton-Raphson formula.
2. Solve by iterative method to determine the real root of $x^{3}-2 x^{2}-4=0$ lying in $(2,3)$ corrected to three decimal places.
3. Find $\Delta^{n} e^{\alpha x}$.
4. Form the divided difference table for the data $(1,22),(2,30),(4,82)$ and (7, 106).
5. Write down the expression for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{0}$ by Newton's backward difference formula.
6. State the formula for 2-point Gaussian quadrature.
7. List out the various methods for solving differential equations.
8. Classify the equation as elliptic, parabolic and hyperbolic
$x f_{x x}+y f_{y y}=0, x>0, y>0$.
9. Derive the finite difference equation for $\nabla^{2} u=-f(x, y)$.
10. State Crank-Nicolson's difference equation in the general form.
11. (a) (i) Find the root which lies between 2 and 3 correct to 3 decimals of the equation $x^{3}-5 x-7=0$ using the method of false position.
(ii) Solve the following system of equations by Gauss-Jordan method :

$$
\begin{aligned}
& x+5 y+z=14 \\
& 2 x+y+3 z=13 \\
& 3 x+y+4 z=17
\end{aligned}
$$

Or

(b) (i) Solve the following system of equations using Gauss-Seidel iteration method
$x+y+54 z=110$
$27 x+6 y-z=85$
$6 x+15 y+2 z=72$
(ii) Using Power method, find numerically largest eigenvalue and the corresponding eigenvector of the matrix
$\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right]$
12. (a) (i) Using Newton's forward formula obtain a polynomial of degree 4 for the following data

$$
\begin{equation*}
y(1)=1, y(2)=-1, y(3)=1, y(4)=-1, y(5)=1 \tag{8}
\end{equation*}
$$

(ii) Use Lagrange's formula to find the cubic curve that passes through $(-1,-8),(1,3)(2,1)$ and $(3,2)$.

Or

(b) (i) If $f(x)=\frac{1}{x^{2}}$ find the divided differences $f\left(x_{0}, x_{1}\right), f\left(x_{0}, x_{1}, x_{2}\right)$ and $f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
(ii) Using Newton's - divided differences find $f(x)$ given $f(0)=2, f(1)=3, f(2)=12, f(5)=147$.
13. (a) (i) Find $f(x)$ from the given data and hence find $f^{\prime}(6)$.

$$
\begin{array}{ccccccc}
x: & 0 & 2 & 3 & 4 & 7 & 9 \tag{8}\\
f(x): & 4 & 26 & 58 & 112 & 466 & 922
\end{array}
$$

(ii) Evaluate $\int_{1}^{3} \frac{\sin x}{x} d x$ using Simpson's $\frac{1}{3}$ rule by taking 10 intervals.

Or
(b) (i) A river is 45 meter wide. The depth d in meters at a distance x meters from one bank is given in the following data:

$$
\begin{array}{ccccccccccc}
x: & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 \\
d: & 0 & 3 & 6 & 8 & 7 & 7 & 6 & 4 & 3 & 0 \tag{8}
\end{array}
$$

Find the cross - section of the river by Simpon's $3 / 8$ rule.
(ii) Evaluate $I=\int_{1}^{3} \int_{1}^{2} \frac{d x d y}{x y}$ using trapezoidal rule with $h=k=0.5$.
14. (a) (i) Using Taylor series method obtain the value of y to three significant figures at $x=0.1(0.1) 0.3$ if y satisfies $y^{\prime}-2 y=3 e^{x}, y(0)=0$.
(ii) Given

$$
y^{\prime}=\frac{1}{2} x y, y(0)=1, y(0.1)=1.0025, y(0.2)=1.0101, y(0.3)=1.0028, \text { use }
$$

Adam's method to estimate $y(0.4)$ correct to four decimal places.

Or

(b) (i) Solve $y^{\prime}=1+y^{2}$ using Runge-Kutta method of order four for $x=0.2$ given $y(0)=0$, taking $h=0.2$.
(ii) Using Milne's predictor and corrector formulae, find $y(4.4)$ given $5 x y^{\prime}+y^{2}-2=0, y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143$.
15. (a) Solve the partial differential equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length $=1$.

Or

(b) Solve numerically $4 \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$ given that $u(0, t)=0=u(4, t) ; u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ taking $h=1$ and $k=\frac{1}{2}$.

