Reg. No.

Question Paper Code : 51776

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester

Computer Science and Engineering

MA 2264/MA 41/MA 51/MA 1251/080280026/10177 MA 401/10144 CSE 21/10144 ECE 15 – NUMERICAL METHODS

(Common to Sixth Semester – Electronics and Communication Engineering, Industrial Engineering and Information Technology, Fifth Semester – Polymer Technology, Chemical Engineering and Polymer Technology, Fourth Semester – Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering and Mechatronics Engineering)

(Regulations 2008/2010)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

Write down the condition for convergence of Newton-Raphson method for f(x).

Find the inverse of A = $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ by Gauss-Jordan method.

State Newton's forward difference formula for equal intervals.

Find the divided differences of $f(x) = x^3 - x^2 + 3x + 8$ for the arguments 0, 1, 4, 5.

Write down the expression for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_n$ by Newton's backward difference formula.

10-06

1.

2.

3.

4.

5.

6. Taking h = 0.5, evaluate $\int \frac{dx}{1+x^2}$ using Trapezoidal rule.

7. Find y(0.1) if
$$\frac{dy}{dx} = 1 + y$$
, y(0) = 1 using Taylor series method.

- 8. State the fourth order Runge-Kutta algorithm.
- 9. Obtain the finite difference scheme for the differential equation 2y'' + y = 5.

10. Write Liebmann's iteration process.

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) (i) Apply Gauss-Seidal method to solve the system of equations 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25
 - (ii) Find by Newton-Raphson method a positive root of the equation $3x - \cos x - 1 = 0.$

OR

(b) (i) Find the numerically largest eigen value of A = $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ and the corresponding eigen vector.

2

(ii) Using Gauss-Jordan method to solve 2x - y + 3z = 8; -x + 2y + z = 4; 3x + y - 4z = 0. (8)

12. (a) Find the natural cubic spline to fit the data :

Hence find f(0.5) and f(1.5).

OR

51776

(16)

(8)

(8)

(8)

- (b) (i) The following table gives the values of density of saturated water for various temperatures of saturated steam. (8) Temperature °C : 250 100 150 200 300 Density hg/m^3 : 799 958 917 865 712 Find by interpolation, the density when the temperature is 275 °C. Use Lagrange's formula to find the value of y at x = 6 from the following (ii) data : (8) 10 x: 3 120 72 168 63 y:
- 13. (a) (i) Find f'(x) at x = 1.5 and x = 4.0 from the following data using Newton's formulae for differentiation. (8)

x:	1.5	2.0	2.5	3.0	3.5	4.0	
y = f(x):	3.375	7.0	13.625	24.0	38.875	59.0	

(ii) Compute $\int_{0}^{1} \sin x \, dx$ using Simpson's 3/8 rule.

 $\pi/2$

(b) Evaluate $\int_{0}^{2} \int_{0}^{1} 4xy \, dx \, dy$ using Simpson's rule by taking $h = \frac{1}{4}$ and $k = \frac{1}{2}$. (16)

14. (a) (i) Using Adam's Bashforth method, find y(4.4) given that $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 1.0143. (8)

> (ii) Using Taylor's series method, find y at x = 1.1 by solving the equation $\frac{dy}{dx} = x^2 + y^2$; y(1) = 2 Carry out the computations upto fourth order derivative.

3

(8)

(8)

- (b) Using Runge-Kutta method of fourth order, find the value of y at x = 0.2, 0.4, 0.6given $\frac{dy}{dx} = x^3 + y$, y(0) = 2. Also find the value of y at x = 0.8 using Milne's predictor and corrector method. (16)
- 15. (a) Solve $\nabla^2 u = 8x^2y^2$ over the square x = -2, x = 2, y = -2, y = 2 with u = 0 on the boundary and mesh length = 1. (16)

OR

 $+ y'_1 y(1) = 2$ Carry out the compositions upto four

4

- (b) (i) Solve $u_{xx} = 32u_t$, h = 0.25 for $t \ge 0$, 0 < x < 1, u(0, t) = 0, u(x, 0) = 0, u(1, t) = t. (8)
 - (ii) Solve $4u_{tt} = u_{xx}$, u(0, t) = 0, u(4, t) = 0, u(x, 0) = x(4 x), $u_t(x, 0) = 0$, h = 1upto t = 4. (8)