Question Paper Code : 51776

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester

Computer Science and Engineering

MA 2264/MA 41/MA 51/MA 1251/080280026/10177 MA 401/10144 CSE 21/10144 ECE 15 NUMERICAL METHODS
(Common to Sixth Semester - Electronics and Communication Engineering, Industrial Engineering and Information Technology, Fifth Semester - Polymer Technology, Chemical Engineering and Polymer Technology, Fourth Semester Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering and Mechatronics Engineering)
(Regulations 2008/2010)
Time : Three Hours
Maximum : $\mathbf{1 0 0}$ Marks

$$
\begin{gathered}
\text { Answer ALL questions. } \\
\text { PART }- \text { A }(10 \times 2=20 \text { Marks })
\end{gathered}
$$

1. Write down the condition for convergence of Newton-Raphson method for $\mathrm{f}(x)$.
2. Find the inverse of $\mathrm{A}=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$ by Gauss-Jordan method.
3. State Newton's forward difference formula for equal intervals.
4. Find the divided differences of $\mathrm{f}(x)=x^{3}-x^{2}+3 x+8$ for the arguments $0,1,4,5$.
5. Write down the expression for $\frac{\mathrm{dy}}{\mathrm{dx}}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$ at $x=x_{\mathrm{n}}$ by Newton's backward difference formula.
6. Taking $\mathrm{h}=0.5$, evaluate $\int_{1}^{2} \frac{\mathrm{~d} x}{1+x^{2}}$ using Trapezoidal rule.
7. Find $y(0.1)$ if $\frac{d y}{d x}=1+y, y(0)=1$ using Taylor series method.
8. State the fourth order Runge-Kutta algorithm.
9. Obtain the finite difference scheme for the differential equation $2 y^{\prime \prime}+y=5$.
10. Write Liebmann's iteration process.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Apply Gauss-Seidal method to solve the system of equations

$$
\begin{equation*}
20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z=25 \tag{8}
\end{equation*}
$$

(ii) Find by Newton-Raphson method a positive root of the equation

$$
\begin{equation*}
3 x-\cos x-1=0 \tag{8}
\end{equation*}
$$

OR

(b) (i) Find the numerically largest eigen value of $A=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ and the corresponding eigen vector.
(ii) Using Gauss-Jordan method to solve $2 x-y+3 z=8 ;-x+2 y+z=4$; $3 x+y-4 z=0$.
12. (a) Find the natural cubic spline to fit the data:

$$
\begin{array}{rccc}
x: & 0 & 1 & 2 \\
f(x): & -1 & 3 & 29 \tag{16}
\end{array}
$$

Hence find $f(0.5)$ and $f(1.5)$.
OR
(b) (i) The following table gives the values of density of saturated water for various temperatures of saturated steam.
Temperature ${ }^{\circ} \mathrm{C}: ~ \begin{array}{llllll}100 & 150 & 200 & 250 & 300\end{array}$
Density hg/m ${ }^{3}$: $\begin{array}{lllll}958 & 917 & 865 & 799 & 712\end{array}$
Find by interpolation, the density when the temperature is $275^{\circ} \mathrm{C}$.
(ii) Use Lagrange's formula to find the value of y at $x=6$ from the following data :

$x:$	3	7	9	10
$y:$	168	120	72	63

13. (a) (i) Find $\mathrm{f}^{\prime}(x)$ at $x=1.5$ and $x=4.0$ from the following data using Newton's formulae for differentiation.

$x:$	1.5	2.0	2.5	3.0	3.5	4.0
$y=f(x):$	3.375	7.0	13.625	24.0	38.875	59.0

(ii) Compute $\int_{0}^{\pi / 2} \sin x \mathrm{~d} x$ using Simpson's $3 / 8$ rule.

OR

(b) Evaluate $\int_{0}^{2} \int_{0}^{1} 4 x y \mathrm{~d} x$ dy using Simpson's rule by taking $\mathrm{h}=\frac{1}{4}$ and $\mathrm{k}=\frac{1}{2}$.
14. (a) (i) Using Adam's Bashforth method, find $y(4.4)$ given that $5 x y^{\prime}+y^{2}=2$, $y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097$ and $y(4.3)=1.0143$.
(ii) Using Taylor's series method, find y at $x=1.1$ by solving the equation $\frac{\mathrm{dy}}{\mathrm{d} x}=x^{2}+\mathrm{y}^{2} ; \mathrm{y}(1)=2$ Carry out the computations upto fourth order derivative.
(b) Using Runge-Kutta method of fourth order, find the value of y at $x=0.2,0.4,0.6$ given $\frac{\mathrm{dy}}{\mathrm{d} x}=x^{3}+\mathrm{y}, \mathrm{y}(0)=2$. Also find the value of y at $x=0.8$ using Milne's predictor and corrector method.
15. (a) Solve $\nabla^{2} u=8 x^{2} y^{2}$ over the square $x=-2, x=2, y=-2, y=2$ with $u=0$ on the boundary and mesh length $=1$.

OR

(b) (i) Solve $\mathrm{u}_{x x}=32 \mathrm{u}_{\mathrm{t}}, \mathrm{h}=0.25$ for $\mathrm{t} \geq 0,0<x<1, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(x, 0)=0$, $\mathrm{u}(1, \mathrm{t})=\mathrm{t}$.
(ii) Solve $4 \mathrm{u}_{\mathrm{tt}}=\mathrm{u}_{x x}, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(4, \mathrm{t})=0, \mathrm{u}(x, 0)=x(4-x), \mathrm{u}_{\mathrm{t}}(x, 0)=0, \mathrm{~h}=1$ upto $\mathrm{t}=4$.

