ANNA UNIVERSITY COMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS: DECEMBER 2009

REGULATIONS - 2007

FOURTH SEMESTER

070030010 - NUMERICAL METHODS

(COMMON TO EEE / EIE / ICE / MECHATRONICS / CIVIL ENGINEERING)

TIME: 3 Hours

Max.Marks: 100

PART - A

 $(20 \times 2 = 40 \text{ MARKS})$

ANSWER ALL QUESTIONS

- 01. What is the condition for the convergence of the iteration method for solving $x = \varphi(x)$?
- State the order of convergence and convergence condition for Newton's Raphson method.
- 03. State the condition for convergence of Guass-Seidel method.
- 04. Show that $\delta = E^{1/2} E^{-1/2}$
- 05. State Lagrange's Interpolation formula
- 06. Show that $\int_{bcd}^{3} \left(\frac{1}{a}\right) = -\frac{1}{abcd}$
- 07. Form the divided difference table for the following data

x: 5 15 22

y:7 36 160

- 08. State Newton's backward interpolation formula
- 09. Using Trapezoidal rule evaluate $\int_{0}^{\pi} \sin x \, dx$ by dividing the range into 6 equal parts.

- 10. State Simpson's $\frac{1}{3}^{nl}$ and $\frac{3}{8}^{nl}$ rule.
- 11. State three point Gaussuian Quadrature formula
- 12. Given y' = x+y, y(0) = 1. Find y(0.1) = 1 by Taylor series method.
- 13. Find y(0.1) by Euler's method, given that $\frac{dy}{dx} = 1 y$, y(0) = 0
- 14. Using modified Euler's method, find y(0.1) if $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1
- Write down the formula to solve second order differential equation using Runge-Kutta Method of 4th order.
- 16. Write Adam-Bashforth predictor-corrector formulae
- 17. Give an example of an elliptic equation
- 18. Classify the equation : $u_{xx} + 2uxy + u_{yy} = 0$
- 19. Write down the diagonal five point formula to solve the equation $u_{xx} + u_{yy} = 0$
- 20. State Bender-Schmidt finite difference explicit scheme to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$

PART - B

 $(5 \times 12 = 60 \text{ MARKS})$

ANSWER ANY FIVE QUESTIONS

- 21a. Find a real root of the equation cosx = 3x-1 correct to 3 decimal places by using iteration method. (6)
 - b. Find by Newton Raphson method, the real root of x^3 6x + 4 = 0 (6)

22a. Solve by Gauss - elimination method, the equation

$$2x + y + 4z \approx 12$$

$$8x - 3y + 2z = 20$$

4x + 11y - z = 33

b. Using Gauss - Jordan method, find the inverse of the matrix

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

- 23a. Using suitable interpolation formula find f(1.5) from the following data

- f(x): 558.3 869.6 880.9
- b. Use Newton's divided difference formula, fit a polynominal to the data

 - $v: -8 \quad 3 \quad 1 \quad 12 \quad and hence find y when x = 1$
- 24a. Use Lagrange's interpolation formula to find the value of y at x = 6, given the data
 - x: 3
 - v: 168 120 72
- b. Find the value of sec 31° using the following data
 - 31

- tan x : 0.6008 0.6249 0.6494

(6)

(6)

(6)

(6)

- 0.6748

- 25a. Evaluate $\int \frac{\sin x}{x} dx$, by dividing the range into six equal parts using Simpson's rule
 - b. Evaluate $\int_{0}^{1.5} e^{-x^2}$ using three-point Gaussian formula
- 26a. Solve $y^2 = y^2 + x$; y(0) = 1 using Taylor series method and compute y(0.1) and y(0.2)
- b. Solve $\frac{dy}{dx} = x^2 y$, y(0) = 1 modified Euler method for x = 0.2 & 0.4 in steps of 0.2 each.
- 27a. Given that $\frac{dy}{dx} = \frac{y^2 2x}{y^2 + x}$ and y = 1 when x = 0. Find y(0.2) using R-K fourth order method taking h = 0.2
 - b. Solve $\frac{d^2y}{dx^2} + xy = 1$, y(0) = 0, y'(1) = 1 with n = 2 (take h = 0.5) by finite difference (6)method
- 28a. Solve the Laplace equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown

b. Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ = over the square mesh with sides x = 0, y = 0, x = 3, y = 3 and u = 0 on the boundary. Assume mesh length h = 1 unit