ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010

REGULATIONS : 2007
FOURTH SEMESTER
070030010 : NUMERICAL METHODS
(COMMON TO CIVIL / EEE / EIE / ICE / MECHATRONICS ENGG.)

PART - A

Max.Marks : 100
(20 x $2=40$ MARKS $)$

ANSWER ALL QUESTIONS

What is meant by diagonally dominant?
State the condition for convergence of Gauss Seidal method.
By Gauss elimination method solve $x+y=2,2 x+3 y=5$.
Find the iterative formula $\sqrt[3]{N}$ by Newton Raphson method.
State any two properties of divided difference
Obtain the interpolation quadratic polynomial for the given data by using Newton Forward Difference formula.

X	0	2	4	6
Y	-3	5	21	45

Find the parabola of the form $y=a x^{2}+b x+c$ passing through the points $(0,0),(1,1),(2,20)$

State Interpolation and Extrapolation
When Simpson's $1 / 3^{\text {rd }}$ rule $\& 3 / 8^{\text {th }}$ rule can be applied?
From the following table find the area bounded by the curve \& the x-axis from $x=2$ to $x=7$

X	2	3	4	5	6	7
$F(x)$	8	27	64	125	216	343

Write the formula used to find $\frac{d y}{d x}$ at $\mathrm{x}=\mathrm{x}_{0}$ using finite differences.
State Simpson's $3 / 8$ rule of integration.
What are the limitations of Euler's method? Given: $y^{\prime}+y=e^{x}, y(0)=0$, find $y(0.2)$ by Taylor's method.
What do you mean by single step and multi step methods? Give examples.
Write down Adam's predictor Corrector formula.
Classify $\mathrm{u}_{\mathrm{xx}}+4 \mathrm{u}_{\mathrm{yy}}+3 \mathrm{u}_{\mathrm{xy}}+4 \mathrm{u}_{\mathrm{y}}+3 \mathrm{u}_{\mathrm{x}}=0$.
Write down Crank-Nicolson's Implicit formula
What is Liebmann's principle?
Write different methods for solving boundary value problem.

PART - B

$(5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

21. a) Using Newton-Raphson iterative method, find the real root of 6 $x \log _{10} x-1.2=0$ correct to four decimal places .
b) Find the negative root of the equation $x^{3}-2 x+5=0$.

Find the inverse of the following matrix $\left(\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right)$ by using Gauss Jordan method
b) Solve the system of equation $8 x-y+z=18,2 x+5 y-2 z=3, x+y-3 z=-6$ 6 by Gauss Seidal method correct to three decimal places.
23. a) Using Newton's interpolation formula, find the melting point of the alloy containing 84% of lead $\& 42 \%$ of lead.

\% of lead in the alloy (p)	40	50	60	70	80	90
Temperature in deg (c)	184	204	226	250	276	304

b) Construct the polynomial for the following data,

X	0	1	3	4
$F(x)$	-12	0	6	12

Hence evaluate $f(2.5)$ \& $f(3.5)$
24. a) Using cubic spline compute $f(1.5), f(1.75) \& f^{\prime}(1)$,

X	1	2	3
$F(x)$	-8	-1	18

b) Find the first three derivatives of the function below at the point $x=1.5$ and

$$
x=4.0
$$

X	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.37	7.0	13.625	24.0	38.875	59.0

25. a)

Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by two and three point Gaussian quadrature formula and hence find the value of π.
b) Evaluate $\int_{4}^{4.4} \int_{2}^{2.6} \frac{d y d x}{x y}$ by using Trapezoidal rule.
26. a) Solve $y^{\prime}-x^{2} y+1=0, y(0)=1$, find $y(0.2)$ and $y(0.4)$ by Taylor's series method.
b) Compute $y(0.2)$ and $y(0.4)$ from $y^{\prime}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$ by Runge - Kutta method of fourth order taking $\mathrm{h}=0.2$
27. a) Given $5 x y^{\prime}+y^{2}=2, y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=6$ 1.0143, compute $y(4.4)$ using Milne's method.
b) Solve $x y^{\prime \prime}+y=0, y(1)=1, y(2)=2$ with $h=0.5 \& h=0.25$ by finite 6 difference method.
28. a) Using Crank - Nicolson scheme, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$ given $u(x, 6$ $0)=0=u(0, t)$ and $u(1, t)=100 t$, choose $h=1 / 4$.
b) Solve $\nabla_{2} u=0$ for the following mesh, with boundary values, by Leibmann's 6 scheme.

$$
1
$$

$$
1
$$

 -

