•	ANNA UNIVERSITY COIMBATORE	11.	Write the formula used to find $\frac{dy}{dy}$ at $x = x_0$ using finite differences						
	B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010		while the formula used to find dx $dx = x_0$ using finite differences.						
•	REGULATIONS : 2007	12.	State Simpson's 3/8 rule of integration.						
•	FOURTH SEMESTER	13.	What are the limitations of Euler's method?						
	070030010 : NUMERICAL METHODS	14.	4. Given: $y' + y = e^x$, $y(0) = 0$, find $y(0.2)$ by Taylor's method.						
,	(COMMON TO CIVIL / EEE / EIE / ICE / MECHATRONICS ENGG.)	15.	What do you mean by single step and multi step methods? Give examples.						
TIME	: 3 Hours Max.Marks : 100	16.	Write down Adam's predictor Corrector formula.						
	PART – A	17.	Classify $u_{xx} + 4u_{yy} + 3u_{xy} + 4u_y + 3u_x = 0.$						
,	(20 x 2 = 40 MARKS) ANSWER ALL QUESTIONS	18.	Write down Crank-Nicolson's Implicit formula.						
	What is moont by disconally deminant?	19.	What is Liebmann's principle?						
.2.	State the condition for convergence of Gauss Seidal method.	20.	Write different methods for solving boundary value problem.						
3.	By Gauss elimination method solve $x + y = 2$, $2x + 3y = 5$.		PART – B						
4.	Find the iterative formula $\sqrt[3]{N}$ by Newton Raphson method.		(5 x 12 = 60 MARKS)						
5.	State any two properties of divided difference.		ANSWER ANY FIVE QUESTIONS						
6.	Obtain the interpolation quadratic polynomial for the given data by using	21 a)	Using Newton-Raphson iterative method, find the real root of 6						
>	Newton Forward Difference formula.	21. u)	$x \log_{10} x - 1.2 = 0$ correct to four decimal places.						
•	X 0 2 4 6 Y -3 5 21 45	b)	Find the negative root of the equation $x^3 - 2x + 5 = 0.$ 6						
7.	Find the parabola of the form $y = ax^2 + bx + c$ passing through the points $(0,0)$, $(1,1)$, $(2,20)$.	22. a)	(4 1 2) 6						
3 .	State Interpolation and Extrapolation.		Find the inverse of the following matrix $\begin{pmatrix} 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$ by using Gauss –						
9.	When Simpson's 1/3 rd rule & 3/8 th rule can be applied?		Jordan method.						
10.	From the following table find the area bounded by the curve & the x-axis from $x = 2$ to $x = 7$.	b)	Solve the system of equation $8x - y + z = 18$, $2x + 5y - 2z = 3$, $x + y - 3z = -$						
2	X 2 3 4 5 6 7		6 by Gauss Seidal method correct to three decimal places.						
-	F(x) = 8 + 27 + 64 + 125 + 216 + 343								
-	1/1/0 21 01 120 210 010								

2

.

1

.

23.	a)	Using Newton's interpolation formula, find the melting point of the alloy								6			
		containing 84% of lead & 42% of lead.											
			% of le	ad in by (p)	40	50	60	70	80	90			
			Tempe in deg	erature (c)	184	204	226	250	276	304			
	b)	Construct the polynomial for the following data,									6		
			X F(x)	0	1 0	3 6	4 12]					
		Hence evaluate f	(2.5) &	f(3.5)									
24.	a)	Using cubic spline	e comp	oute f(1	.5) , f	(1.75)	& f'(1),					6
			X F(x)	1 2	2 3 1 18								
	b)	Find the first three	e deriv	atives	of the	functi	on be	low a	t the p	point x	= 1.5 a	and	6
		x = 4.0											
			X	1.5	2.0	2.5	3.0		3.5	4.0			
			Y	3.37	7.0	13.625	5 24.	0 38	.875	59.0			
25.	a)	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$	by two	o and t	three	point	Gaus	sian	quadr	ature	formula	and	6
		hence find the va	lue of	π.									
		the second s											
	b)	Evaluate $\int_{4}^{4.4} \int_{2}^{2.6} \frac{dy}{x}$	$\frac{dx}{y}$ by	using 1	Frape:	zoidal	rule.						6

26. a) Solve $y' - x^2y + 1 = 0$, y(0) = 1, find y(0.2) and y(0.4) by Taylor's series 6 method.

b) Compute y(0.2) and y(0.4) from $y' = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1 by Runge - Kutta method of fourth order taking h = 0.2.

6

- 27. a) Given $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 61.0143, compute y(4.4) using Milne's method.
 - b) Solve xy'' + y = 0, y(1) = 1, y(2) = 2 with h = 0.5 & h = 0.25 by finite 6 difference method.
- 28. a) Using Crank Nicolson scheme, solve $u_{xx} = 16u_t$, 0 < x < 1, t > 0 given u(x = 6)0) = 0 = u(0, t) and u(1, t) = 100t, choose h = $\frac{1}{4}$.
 - b) Solve $\nabla_2 u = 0$ for the following mesh, with boundary values, by Leibmann's 6 scheme.

*****THE END*****

3