	ANNA	UNIVERSIT	I I CONVIE	DATORE
B.E. / B.TI	ECH. DEGI	REE EXAM		S: MAY / JUNE 2010
	F	REGULATI	ONS : 200	77
		SIXTH SE	MESTER	
	0702300	54 - NUME		ETHODS
	(0		TO CSE /	IT)
3 Hours				Max. Marks :100
		PAR	Г-А	
				(20 x 2 = 40 MARKS)
	AN	SWER ALL	QUEST	
State the orde				gence condition for Newton's
Raphson metho		igenee an	d conver	gende contailor for reasons
		e for Endin		rest of N uters N is a real
			g square	root of N, where N is a real
number, by New	wton's met	nod.		
State any two o	lifferences	between d	irect and	iterative methods for solving a
system of equa	tions.			
Write the suffic	ent conditi	ons for con	vergence	of Gauss Jacobi method.
State Newton's	forward int	terpolation	formula. V	Vhen is it used?
In cubic spline i $0 \& M_2 = 0.$	nterpolatio	n from the t	following	data, the value of M_1 is _, if M_0
X	1	2 3		
Y		-1 18		
Give the Lagran	nge's formu	Ila for inver	se interpo	lation.
From the table,	the polyno	mial of f(x)		
	x 2		5 10	
	(x) 3	7	9 19	

TIME

3.

4.

5.

6

7. 8.

9.

10.

State Simpson's 3/8 rule and 1/3 rule

11.

Evaluate $\int f(x)dx$ from the table by Simpson's 3/8-rule

X	1	2	3	4
f(x)	1	8	27	64
f(x)	1	8	21	64

12. How many basic values are required for Milne's predictor - corrector method?

13. Given $y' = x^2 + y^2$ and y(0) = 1, find y(0,1) by Taylor series.

14. Find y(0.1) given $y' = \frac{1}{2}(x+y)$, y(0)=1 by improved Euler method.

- 15. Write down the algorithm of Runge - Kutta method of fourth order.
- Write Milne's predictor corrector formula. 16. a
 - How many basic values are required for Milne's predictor corrector b method.
- Write down the Leibmann's iterative formula for solving the Laplace 17. equation.
- Write down the finite difference scheme for the solution of the Poisson's 18. equation $\nabla^2 u = f(x, y)$
- Write down the Bender Schmidt recurrence relation for one dimensional 19. a heat equation.
 - For what value of λ , is the Bender Schmidt method of solving the one b dimensional heat equation $U_{x} = aU_{t}$ stable.

2

20. In solving the wave equation, how will you express the initial condition $u_{t}(x, 0)=0.$

PART - B

 $(5 \times 12 = 60 \text{ MARKS})$

4

6

ANSWER ANY FIVE QUESTIONS

- 21. a) Solve the system of equations by Gauss Jordan method 6 x - y + z = 1 -3x + 2y - 3z = -6 2x - 5y + 4z = 5
 - b) Solve the system of equations by Gauss-Seidel method correct to 4 decimal 6 places
 - 28x + 4y z = 32x + 3y + 10z = 24 2x + 17y + 4z = 35
- 22. a) Find the dominant eigen value and the corresponding eigen vector of A = 8
 - $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \end{pmatrix}$ by power method.
 - 0 0 3)
 - ^{b)} Find an approximate root of $x \log_{10} x 1.2 = 0$ by false position method.

23. Find the cubic spline for the data in [2, 3]. $\begin{array}{c|c}
x & 1 & 2 & 3 \\
\hline
y & 1 & 5 & 11
\end{array}$

Assume M(0) = M(2) = 0, hence obtain $\mathcal{Y}(2.5)$.

24. a) Using Lagrange's interpolation formula, find y (10) from the following table

х	:	5	6	9	11	
у	:	12	13	14	16	

24. b) Find a cubic polynomial of x, using divided difference method given

6

6

6

6

- 25. a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Romberg's rule.
- b) Using Gaussian three point formula, evaluate $\int_{2}^{3} \frac{dt}{1+t}$
- 26. Given $y'=2y+3e^x$, y (0) = 0, i) find y (0.1) by Euler method, ii) y (0.2) by Taylor method, iii) y (0.3) by Runge -Kutta method, iv) y (0.4) by Adam's Predictor – corrector method
- 27. a) Using finite differences, solve y'' 3y' + 2y = 0, given y (0) = 2, y (1) = 10.1
 - b) Solve by Crank – Nicholson method the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ subject to u(x,0)=0, u(0,t)=0 & u(l,t)=t take h = 0.25, for one time steps.
- 28. Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the squares mesh bounded by x = 0; y = 0; x = 3; y = 3 with u = 0 on the boundary and mesh length is 1 unit.

*****THE END*****

4

3