Question Paper Code : 21526

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Sixth Semester
Computer Science and Engineering

MA 2264/MA 41/MA 51/080280026/10177 MA 401/ 10144 CSE 21/ 10144 EC 15 NUMERICAL METHODS
(Common to Electronics and Communication Engineering and Information Technology Fifth Semester - Polymer Technology, Chemical Engineering and Polymer Technology to Fourth Semester - Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering and Mechatronics Engineering)
(Also common to Fourth Semester MA 1251 - Numerical methods for Civil Engineering, Aeronautical Engineering and Electrical and Electronics Engineering)
(Regulation 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Find an iterative formula to find the reciprocal of a given number $N(N \neq 0)$.
2. What is the Use of Power method?
3. State Newton's forward interpolation formula.
4. Using Lagrange's formula, find the polynomial to the given data.

$$
\begin{array}{lllc}
\mathrm{X}: & 0 & 1 & 3 \\
\mathrm{Y}: & 5 & 6 & 50
\end{array}
$$

5. State Simpson's one-third rule.
6. Evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule by dividing ten equal parts.
7. Find $y(1.1)$ if $y^{\prime}=x+y, y(1)=0$ by Taylor series method.
8. State Euler's formula.
9. Obtain the finite difference scheme for the differential equation $2 y^{\prime \prime}+y=5$.
10. Write Liebmann's iteration process.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find a positive root of the equation $\cos x-3 x+1=0$ by using iteration method.
(ii) Solve, by Gauss-Seidel method, the equations $27 x+6 y-z=85$, . $6 x+15 y+2 z=72, x+y+54 z=110$.

Or

(b) (i) Find, by Gauss-Jordan method, the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
4 & 1 & 2 \tag{8}\\
2 & 3 & -1 \\
1 & -2 & 2
\end{array}\right]
$$

(ii) Using Jacobi method find the all eigen values and their corresponding eigen vectors of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]$.
12. (a) (i) Apply Lagrange's formula, to find $y(27)$ to the data given below.

$$
\begin{array}{ccccc}
\mathrm{x}: & 14 & 17 & 31 & 35 \tag{8}\\
\mathrm{y}: & 68.8 & 64 & 44 & 39.1
\end{array}
$$

(ii) Fit a polynomial, by using Newton's forward interpolation formula, to the data given below.

$$
\begin{array}{ccccc}
\mathrm{x}: & 0 & 1 & 2 & 3 \tag{8}\\
\mathrm{y}: & 1 & 2 & 1 & 10
\end{array}
$$

Or
(b) (i) Use Newton's divided difference formula to find $f(x)$ from the following data

$$
\begin{array}{lllll}
\mathrm{x}: & 1 & 2 & 7 & 8 \tag{8}\\
\mathrm{y}: & 1 & 5 & 5 & 4
\end{array}
$$

(ii) Using cubic spline, compute $y(1.5)$ from the given data.

$$
\begin{array}{lccc}
\mathrm{x}: & 1 & 2 & 3 \tag{8}\\
\mathrm{y}: & -8 & -1 & 18
\end{array}
$$

13. (a) (i) Find the first three derivatives of $f(x)$ at $x=1.5$ by using Newton's forward interpolation formula to the data given below. (8)

$$
\begin{array}{lcccccc}
\mathrm{x}: & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \\
\mathrm{y}: & 3.375 & 7 & 13.625 & 24 & 38.875 & 59
\end{array}
$$

(ii) Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{1}{\left(1+x^{2}\right)} d x$ by taking eight equal intervals.

Or
(b) (i) Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+1}{1+(x+1)^{2}} d x$ by Gaussian three point formula.
(ii) Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{x y} d x d y$ using Simpson's one-third rule.
14. (a) (i) Using Taylor series method to find $y(0.1)$ if $y^{\prime}=x^{2}+y^{2}, y(0)=1$.
(ii) Using Runge-Kutta method find $y(0.2)$ if $y^{\prime \prime}=x y^{\prime 2}-y^{2}, y(0)=1, y^{\prime}(0)=0, h=0.2$.

Or

(b) (i) Solve $y^{\prime}=\frac{y-x}{y+x}, y(0)=1$ at $x=0.1$ by taking $h=0.02$ by using Euler's method.
(ii) Using Adam's method to find $y(2)$ if $y^{\prime}=(x+y) / 2$, $y(0)=2, y(0.5)=2.636, y(1)=3.595, \quad y(1.5)=4.968$.
15. (a) Solve $\nabla^{2} u=8 x^{2} y^{2}$ over the square $x=-2, x=2, y=-2, y=2$ with $u=0$ on the boundary and mesh length $=1$.

Or

(b) (i) Solve $u_{x x}=32 u_{t}, h=0.25$ for $t \geq 0,0<x<1, u(0, t)=0, u(x, 0)=0$, $u(1, t)=t$.
(ii) Solve $4 u_{t t}=u_{x x}, u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x), u_{t}(x, 0)=0$, $h=1$ upto $t=4$.

