Reg. No. : \square

Question Paper Code : 62307

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.
Sixth Semester
Computer Science and Engineering 080230029 - NUMERICAL METHODS
(Common to 080320009 - Numerical Methods for Fifth Semester, Chemical Engineering)

(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. What are the important methods of solving algebraic and transcendental equations?
2. Find the root of the equation $x^{3}+x-1=0$ using Newton Raphson method.
3. Define Interpolation polynomial.
4. Define first, second and third order divided differences.
5. State Simpson's $3 / 8$ rule of integration.
6. Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}$, using Gaussian two point formula.
7. Apply Euler's method to find $y(0.1)$ and $y(0.2)$, given that $\frac{d y}{d x}=y-x, y(0)=2$.
8. Explain the procedure for applying Runge-Kutta method for solving second order ordinary differential equations.
9. Give Schmidt explicit formula for one dimensional heat equation.
10. Write down the explicit scheme to solve one-dimensional wave equation.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Use Regula Falsi method to find the real root of the equation $x^{2}-\log _{e} x-12=0$ correct to three decimal places.
(ii) Determine the largest eigenvalue and the corresponding eigenvector of the matrix $\left(\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right)$ with $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ as the initial vector corrected to two decimal places.

Or
(b) (i) Find the inverse of the matrix $\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right)$, using Gauss-Jordan method.
(ii) Solve, the following equations, by Gauss-Seidel method, correct to four decimal places

$$
\begin{equation*}
28 x+4 y-z=32, x+3 y+10 z=24,2 x+17 y+4 z=35 . \tag{8}
\end{equation*}
$$

12. (a) (i) Find the interpolation polynomial for the following data, by using Lagrange's interpolation method :

$$
\begin{array}{cccccc}
x: & 1 & 2 & 3 & 4 & 7 \\
y: & 2 & 4 & 8 & 16 & 128 \tag{8}
\end{array}
$$

Hence find the value of $f(2)$.
(ii) Find the cubic polynomial which takes the following values, by using Newton forward difference formula:

$$
\begin{array}{lllll}
x: & 0 & 1 & 2 & 3 \tag{8}\\
f(x): & 1 & 2 & 1 & 10 \\
& & \text { Or } & &
\end{array}
$$

(b) Find the cubic spline interpolation for the following data and hence find $f(0.5)$:

$$
\begin{array}{cccccc}
x: & 1 & 2 & 3 & 4 & 5 \\
f(x): & 1 & 0 & 1 & 0 & 1
\end{array}
$$

13. (a) (i) Find first and second derivatives of the functions at the point $x=1.2$ from the following data :

$$
\begin{array}{llllll}
x: & 1 & 2 & 3 & 4 & 5 \tag{8}\\
y: & 0 & 1 & 5 & 6 & 8
\end{array}
$$

(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, using Trapezoidal rule with $h=0.2$ and hence obtain the approximate value of π.

Or
(b) (i) By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x d x$, using Simpson's one-third rule.
(ii) Using Romberg's method, evaluate $\int_{0}^{1} \frac{d x}{1+x}$, correct to 4 decimal places and hence find $\log _{e} 2$.
14. (a) (i) Use modified Euler's method to find $y(0.1)$ and $y(0.2)$ given that $\frac{d y}{d x}=x y, y(0)=1$.
(ii) Use Runge-Kutta method of order 4 to find $y(0.1)$ and $y(0.2)$ given $\frac{d y}{d x}=y-x^{2}, y(0)=1$, taking $h=0.1$.

Or
(b) Given $\frac{d y}{d x}=x y+y^{2}, y(0)=1$. Use Taylor's series method to find the values of $y(0.1), y(0.2), y(0.3)$ and find $y(0.4)$ by Millne's method.
15. (a) Solve the Poisson equation $\nabla^{2}=-4 x y$ over the square mesh sides $x=0, y=0 ; x=3$ and $y=3$ with $u=0$ on the boundary and mesh length of one unit, correct to two decimal places, using the method of iteration.

Or

(b) Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ satisfying $u(0, t)=0=u(5, t)$, when $t \geq 0$ and $u(x, 0)=10 x(5-x), 0 \leq x \leq 5$. Compute u for one time-step by CrankNicolson's scheme, taking $h=1$ and $k=1$.

