Reg. No. : \square

Question Paper Code : 91583

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Sixth Semester
Computer Science and Engineering

MA 2264/MA 41/MA 51/MA 1251/080280026/10177 MA 401/10144 CSE 21/ 10144 ECE 15 - NUMERICAL METHODS
(Common to Sixth Semester - Electronics and Communication Engineering Industrial Engineering and Information Technology, Fifth Semester - Polymer Technology, Chemical Engineering and Polymer Technology, Fourth Semester Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering and Mechatronics Engineering)
(Regulation 2008/2010) .
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$

1. Write down the condition for convergence of Newton-Rephson method for $f(x)=0$.
2. Find the inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$ by Gauss-Jordan method.
3. Find the second degree polynomial through the points $(0,2),(2,1),(1,0)$ using Lagrange's formula.
4. State Newton's backward formula for interpolation.
5. State the local error term in Simpson's $\frac{1}{3}$ rule.
6. State Romberg's integration formula to find the value of $I=\int_{a}^{b} f(x) d x$ for first two intervals.
7. State the Milne's predictor - corrector formulae.
8. Given $y^{\prime}=x+y, y(0)=1$ find $y(0.1)$ by Euler's method.
9. What is the central difference approximation for $y^{\prime \prime}$?
10. Write down the standard five-point formula to find the numerical solution of Laplace equation.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Apply Gauss-Seidal method to solve the system of equations $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; \quad 2 x-3 y+20 z=25$.
(ii) Find by Newton-Raphson method a positive root of the equation $3 x-\cos x-1=0$.

> Or
(b) (i) Find the numerically largest eigenvalue of $A=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ and the corresponding eigenvector.
(ii) Using Gauss-Jordan method to solve $2 x-y+3 z=8$; $-x+2 y+z=4 ; 3 x+y-4 z=0$.
12. (a) (i) Using Newton's forward interpolation formula, find the cubic polynomial which takes the following values:

$$
\begin{array}{ccccc}
x & 0 & 1 & 2 & 3 \tag{8}\\
f(x) & 1 & 2 & 1 & 10
\end{array}
$$

(ii) Obtain the cubic spline approximation for the function $y=f(x)$ from the following data, given that $y_{0}{ }^{\prime \prime}=y_{3}^{\prime \prime}=0$.

$$
\begin{array}{ccccc}
x & -1 & 0 & 1 & 2 \\
y & -1 & 1 & 3 & 35
\end{array}
$$

(b) (i) By using Newton's divided difference formula find $f(8)$, given

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

(ii) Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for the following values of x and y :

$$
\begin{array}{ccccc}
x & 0 & 1 & 2 & 5 \tag{8}\\
y & 2 & 3 & 12 & 147
\end{array}
$$

13. (a) (i) Evaluate $\int_{1}^{2} \frac{d x}{1+x^{3}}$ using 3 point Gaussian formula.
(ii) The velocity v of a particle at a distance a from a point on its path is given by the table :

$$
\begin{array}{cccccccc}
s(f t) & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\
v(f t / \mathrm{sec}) & 47 & 58 & 64 & 65 & 61 & 52 & 38
\end{array}
$$

Estimate the time taken to travel 60 feet by using Simpson's $\frac{1}{3}$ rule. Compare the result with Simpson's $\frac{3}{8}$ rule.

$$
\mathrm{Or}
$$

(b). (i) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{1}{1+x+y} d x d y$ by trapzoidal rule.
(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ and correct to 3 decimal places using Romberg's method and hence find the value of $\log _{e} 2$.
14. (a) (i) Using Taylor's series method, find y at $x=0$ if $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
(ii) Given $5 x y^{\prime}+y^{2}=2, y(4)=1, \quad y(4.1)=1.0049, \quad y(4.2)=1.0097$, $y(4.3)=1.0143$: Compute $y(4.4)$ using Milne's method.

Or

(b) (i) Apply modified Euler's method to find $y(0.2)$ and $y(0.4)$ given $y^{\prime}=x^{2}+y^{2}, \quad y(0)=1$ by taking $h=0.2$.
(ii) Given $y^{\prime \prime}+x y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=0$ find the value of $y(0.1)$ by Runge-Kutta's method of fourth order.
15. (a) By iteration method, solve the elliptic equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ over a square region of side 4 , satisfying the boundary conditions.
(i) $u(0, y)=0,0 \leq y \leq 4$
(ii) $u(4, y)=12+y, 0 \leq y \leq 4$
(iii) $u(x, 0)=3 x, 0 \leq x \leq 4$
(iv) $u(x, 4)=x^{2}, 0 \leq x \leq 4$

By dividing the square into 16 square meshes of side 1 and always correcting the computed values to two places of decimals, obtain the values of u at 9 interior pivotal points.

Or

(b) Solve by Crank-Nicolson's method $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for $0<x<1, t>0$ given that $u(0, t)=0, \quad u(1, t)=0$ and $u(x, 0)=100 x(1-x)$. Compute u for one time step with $h=\frac{1}{4}$ and $K=\frac{1}{64}$.

