Question Paper Code : 11347

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Sixth/Fifth Semester

Computer Science and Engineering

080230029/080320009 - NUMERICAL METHODS

(Common to Chemical Engineering)

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. State the condition for the convergence of iteration method.

- 2. What is the order of convergence of Newton-Raphson method?
- 3. Write the Lagrange's formula to find f(x) if four sets of values (x_i, y_i) , i = 0, 1, 2, 3 are given.
- 4. Construct a table of divided difference for the following data :

- 5. Write down the expression for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_0$ by Newton's backward difference formula.
- 6. State the formula for 2-point Gaussian quadrature.
- 7. Using Euler's method, find y(0.2) given y' = x + y with y(0) = 1.

8. Write Milne's Predictor Corrector formula.

- 9. Give Schmidt explicit formula for one dimensional heat equation.
- Write down the explicit scheme to solve one-dimensional wave equation. 10.

PART B — $(5 \times 16 = 80 \text{ marks})$

Find the root which lies between 2 and 3 correct to 3 decimals of the 11. (a) (i) equation $x^3 - 5x - 7 = 0$ using the method of false position. (8)

> Solve the following system of equations by Gauss-Jordan method : (ii)

x + 5y + z = 142x + y + 3z = 133x + y + 4z = 17.

Or

(b)

(i) Solve the following system of equations using Gauss-Seidel iteration method : (8)

> x + y + 54z = 11027x + 6y - z = 856x + 15y + 2z = 72.

- Using Power method, find numerically largest eigenvalue and the (ii) corresponding eigenvector of the matrix : (8)
 - 1 3 24 4, -1 . 6 3 5

12. Using Lagrange's interpolation formula, fit a polynomial to the (a) (i) following data and hence find the value of y at x = 2. (8)

> x : 0 1 3 4 y: -120 6 12

(ii) Using Newton's backward interpolation formula, find y when x = 27 from the following data : (8)

<i>x</i> :	10	15	20	25	30
<i>y</i> :	35.4	32.2	29.1	26.0	23.1

(8)

(b) Fit a natural cubic spline for the following data: (i)

(ii)Using Newton's interpolation formula find y at x=8 from the following data : (8)

<i>x</i> :	0	5	10	15	20	25
y :	7	11	14	18	24	32

13. (a) (i)

Find first and second derivatives of the functions at the point x = 1.2 from the following data : (8)

<i>x</i> :	1	2	3	4	5
y :	0	1	5	6	8

(ii) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2 and hence obtain the approximate value of π . (8)

Or

- By dividing the range into 10 equal parts evaluate $\int \sin x \, dx$ using (b) (i) Simpson's one-third rule. (8)
 - Using Romberg's method, evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to 4 decimal (ii)places and hence find log, 2. (8)

Find y(0.1) and y(0.2) correct to four decimal places 14. (a) (i) by Runge-Kutta method given $\frac{dy}{dx} = y - x$, y(0) = 2. (8)

(ii) Given $\frac{dy}{dx} = x^2(1+y)$, y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.5485, y(1.3) = 1.9789 find y(1.4) by Adam's Predictor-Corrector method. (8)

Or

- Using Modified Euler's method, compute y at x = 0.1 and 0.2 given (b) (i) that $\frac{dy}{dx} = x + y^2$, y(0) = 1. (8)
 - Using Milne's method find y(4.4) for $5xy' + y^2 2 = 0$ given y(4) = 1, (ii) y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.143. (8)

(8)

15. (a)

(b)

- (i) Solve $y'' + xy' + y = 3x^2 + 2$, y(0) = 0, y(1) = 1 with h = 0.25 by finite difference method. (8)
- (ii) Solve the equation $u_t = u_{xx}$, $0 \le x \le 4$, t > 0 using the conditions u(0, t) = 0, u(4, t) = 0 and $u(x, 0) = \frac{x}{3}(16 - x^2)$ by Crank-Nicolson's method with h = 1, k = 1. (8)

Or

- (i) Solve $u_{tt} = u_{xx}$, 0 < x < 1, t > 0 subject to u(0, t) = 0, u(1, t) = 0, $\frac{\partial u}{\partial t}(x, 0) = 0$ and $u(x, 0) = 100(x - x^2)$, compute u for 4 time steps taking h = 0.25. (8)
 - (ii) Solve the equation $u_t = u_{xx}$ subject to u(0, t) = 0, u(1, t) = 0 and $u(x, 0) = 100 \sin \pi x$, 0 < x < 1 taking h = 0.2. Tabulate the values of u for 5 time steps by Bender-Schmidt method with $\lambda = \frac{1}{4}$. (8)