Reg. No. : \square

Question Paper Code : 11347

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.
Sixth/Fifth Semester

Computer Science and Engineering 080230029/080320009 - NUMERICAL METHODS
(Common to Chemical Engineering)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$

1. State the condition for the convergence of iteration method.
2. What is the order of convergence of Newton-Raphson method?
3. Write the Lagrange's formula to find $f(x)$ if four sets of values $\left(x_{i}, y_{i}\right)$, $i=0,1,2,3$ are given.
4. Construct a table of divided difference for the following data :

$x:$	0	2	3	5	6
$y:$	1	19	55	241	415

5. Write down the expression for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{0}$ by Newton's backward difference formula.
6. State the formula for 2-point Gaussian quadrature.
7. Using Euler's method, find $y(0.2)$ given $y^{\prime}=x+y$ with $y(0)=1$.
8. Write Milne's Predictor Corrector formula.
9. Give Schmidt explicit formula for one dimensional heat equation.
10. Write down the explicit scheme to solve one-dimensional wave equation.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the root which lies between 2 and 3 correct to 3 decimals of the equation $x^{3}-5 x-7=0$ using the method of false position.
(ii) Solve the following system of equations by Gauss-Jordan method :

$$
\begin{array}{r}
x+5 y+z=14 \\
2 x+y+3 z=13 \tag{8}\\
3 x+y+4 z=17
\end{array}
$$

Or
(b) (i) Solve the following system of equations using Gauss-Seidel iteration method :

$$
\begin{align*}
x+y+54 z & =110 \tag{8}\\
27 x+6 y-z & =85 \\
6 x+15 y+2 z & =72
\end{align*}
$$

(ii) Using Power method, find numerically largest eigenvalue and the corresponding eigenvector of the matrix :

$$
\left[\begin{array}{ccc}
1 & -3 & 2 \tag{8}\\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]
$$

12. (a) (i) Using Lagrange's interpolation formula, fit a polynomial to the following data and hence find the value of y at $x=2$.

$$
\begin{array}{ccccc}
x: & 0 & 1 & 3 & 4 \tag{8}\\
y: & -12 & 0 & 6 & 12
\end{array}
$$

(ii) Using Newton's backward interpolation formula, find y when $x=27$ from the following data :

$x:$	10	15	20	25	30
$y:$	35.4	32.2	29.1	26.0	23.1

(b) (i) Fit a natural cubic spline for the following data:

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 3 \\
y: & 1 & 4 & 0 & -2
\end{array}
$$

(ii) Using Newton's interpolation formula find y at $x=8$ from the following data :

$x:$	0	5	10	15	20	25
$y:$	7	11	14	18	24	32

13. (a) (i) Find first and second derivatives of the functions at the point $x=1.2$ from the following data :

$$
\begin{array}{llllll}
x: & 1 & 2 & 3 & 4 & 5 \tag{8}\\
y: & 0 & 1 & 5 & 6 & 8
\end{array}
$$

(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Trapezoidal rule with $h=0.2$ and hence obtain the approximate value of π.

Or
(b) (i) By dividing the range into 10 equal parts evaluate $\int_{0}^{\pi} \sin x d x$ using Simpson's one-third rule.
(ii) Using Romberg's method, evaluate $\int_{0}^{1} \frac{d x}{1+x}$ correct to 4 decimal places and hence find $\log _{e} 2$.
14. (a) (i) Find $y(0.1)$ and $y(0.2)$ correct to four decimal places by Runge-Kutta method given $\frac{d y}{d x}=y-x, y(0)=2$.
(ii) Given $\frac{d y}{d x}=x^{2}(1+y), \quad y(1)=1, \quad y(1.1)=1.233, \quad y(1.2)=1.5485$, $y(1.3)=1.9789$ find $y(1.4)$ by Adam's Predictor-Corrector method.

Or

(b) (i) Using Modified Euler's method, compute y at $x=0.1$ and 0.2 given that $\frac{d y}{d x}=x+y^{2}, y(0)=1$.
(ii) Using Milne's method find $y(4.4)$ for $5 x y^{\prime}+y^{2}-2=0$ given $y(4)=1$, $y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.143$.
15. (a) (i) Solve $y^{\prime \prime}+x y^{\prime}+y=3 x^{2}+2, y(0)=0, y(1)=1$ with $h=0.25$ by finite difference method.
(ii) Solve the equation $u_{t}=u_{x x}, 0 \leq x \leq 4, t>0$ using the conditions $u(0, t)=0, u(4, t)=0$ and $u(x, 0)=\frac{x}{3}\left(16-x^{2}\right)$ by Crank-Nicolson's method with $h=1, k=1$.

Or

(b) (i) Solve $u_{t t}=u_{x x}, 0<x<1, t>0$ subject to $u(0, t)=0, u(1, t)=0$, $\frac{\partial u}{\partial t}(x, 0)=0$ and $u(x, 0)=100\left(x-x^{2}\right)$, compute u for 4 time steps taking $h=0.25$.
(ii) Solve the equation $u_{t}=u_{x x}$ subject to $u(0, t)=0, u(1, t)=0$ and $u(x, 0)=100 \sin \pi x, 0<x<1$ taking $h=0.2$. Tabulate the values of u for 5 time steps by Bender-Schmidt method with $\lambda=\frac{1}{4}$.

