Reg. No. : \square

Question Paper Code : 10396

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Fourth Semester
Common to ECE and Bio Medical Engineering
MA 2261 / 181403/ MA 45/ MA 1253 / 10177 PR 401 / 080380009 PROBABILITY AND RANDOM PROCESSES
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Find C, if $P[X=n]=C\left(\frac{2}{3}\right)^{n} ; n=1,2, \ldots$
2. The probability that a man shooting a target is $1 / 4$. How many times must he fire so that the probability of his hitting the target atleast once is more than $2 / 3$?
3. Let X and Y be two discrete random variables with joint probability mass function

$$
P(X=x, Y=y)= \begin{cases}\frac{1}{18}(2 x+y), & x=1,2 \text { and } y=1,2 \\ 0, & \text { otherwise }\end{cases}
$$

Find the marginal probability mass functions of X and Y.
4. State Central Limit Theorem for iid random variables.
5. Define wide-sense stationary random process.
6. If $\{X(t)\}$ is a normal process with $\mu(t)=10$ and $C\left(t_{1}, t_{2}\right)=16 e^{-\left|t_{1}-t_{2}\right|}$ find the variance of $X(10)-X(6)$.
7. The autocorrelation function of a stationary random process is $R(\tau)=16+\frac{9}{1+6 \tau^{2}}$. Find the mean and variance of the process.
8. Prove that $S_{x y}(\omega)=S_{y x}(-\omega)$.
9. Prove that the system $y(t)=\int_{-\infty}^{\infty} h(u) \cdot X(t-u) d u$ is a linear time-invariant system.
10. What is unit impulse response of a system? Why is it called so?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) A random variable X has the following probability distribution.

$$
\begin{array}{ccccccccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
P(x): & 0 & K & 2 K & 2 K & 3 K & K^{2} & 2 K^{2} & 7 K^{2}+K
\end{array}
$$

Find:
(1) The value of K
(2) $P(1.5<X<4.5 \mid X>2)$ and
(3) The smallest value of n for which $P(X \leq n)>\frac{1}{2}$.
(ii) Find the M.G.F. of the random variable X having the probability density function
$f(x)= \begin{cases}\frac{x}{4} e^{\frac{-x}{2}}, & x>0 \\ 0, & \text { elsewhere } .\end{cases}$
Also deduce the first four moments about the origin.

> Or
(b) (i) Given that X is distributed normally, if $P[X<45]=0.31$ and $P[X>64]=0.08$, find the mean and standard deviation of the distribution.
(ii) The time in hours required to repair a machine is exponentially distributed with parameter $\lambda=1 / 2$
(1) What is the probability that the repair time exceeds 2 hours?
(2) What is the conditional probability that a repair takes atleast 10 hours given that its duration exceeds 9 hours?
12. (a) (i) The joint probability density function of the random variable (X, Y) is given by $f(x, y)=K x y e^{-\left(x^{2}+y^{2}\right)}, x>0, y>0$.

Find the value of K and $\operatorname{Cov}(X, Y)$. Are X and Y independent?
(ii) If X and Y are uncorrelated random variables with variances 16 and 9. Find the correlation co-efficient between $X+Y$ and $X-Y$. (8)
(b) (i) Let (X, Y) be a two dimensional random variable and the probability density function be given by
$f(x, y)=x+y, 0 \leq x, y \leq 1$
Find the p.d.f of $U=X Y$.
(ii) Let $X_{1}, X_{2}, \ldots . X_{n}$ be Poisson variates with parameter $\lambda=2$ and $S_{n}=X_{1}+X_{2}+\ldots X_{n}$ where $n=75$. Find $P\left[120 \leq S_{n} \leq 160\right]$ using central limit theorem.
13. (a) (i) If $\{X(t)\}$ is a WSS process with autocorrelation $R(\tau)=A e^{-\alpha|\tau|}$, determine the second order moment of the $R V\{X(8)-X(5)\}$.
(ii) If the WSS process $\{X(t)\}$ is given by $X(t)=10 \cos (100 t+\theta)$, where θ is uniformly distributed over $(-\pi, \pi)$, prove that $\{X(t)\}$ is correlation ergodic.

Or

(b) (i) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is
(1) more than 1 minute
(2) between 1 minute and 2 minute and
(3) 4 min or less.
(ii) Suppose that $X(t)$ is a Gaussian process with $\mu_{x}=2$, $R_{x x}(\tau)=5 e^{-0.2|\tau|}$. Find the probability that $X(4) \leq 1$.
14. (a) (i) A stationary random process $X(t)$ with mean 2 has the auto correlation function $R_{X X}(\tau)=4+e^{\frac{|\tau|}{10}}$. Find the mean and variance of $Y=\int_{0}^{1} X(t) d t$.
(ii) Find the power spectral density function whose autocorrelation function is given by $\dot{R}_{X X}(\tau)=\frac{A^{2}}{2} \cos \left(\omega_{0} \tau\right)$.
(b) (i) The cross-correlation function of two processes $X(t)$ and $Y(t)$ is given by $R_{X Y}(t, t+\tau)=\frac{A B}{2}\left\{\sin \left(\omega_{0} \tau\right)+\cos \omega_{0}[(2 t+\tau)]\right\}$ where A, B and ω_{0} are constants. Find the cross-power spectrum $S_{X Y}(\omega)$.
(ii) Let $X(t)$ and $Y(t)$ be both zero-mean and WSS random processes Consider the random process $Z(t)$ defined by $Z(t)=X(t)+Y(t)$. Find
(1) The Auto correlation function and the power spectrum of $Z(t)$ if $X(t)$ and $Y(t)$ are jointly WSS.
(2) The power spectrum of $Z(t)$ if $X(t)$ and $Y(t)$ are orthogonal.
15. (a) (i) Consider a system with transfer function $\frac{1}{1+j \omega}$. An input signal with autocorrelation function $m \delta(\tau)+m^{2}$ is fed as input to the system. Find the mean and mean-square value of the output.
(ii) A stationary random process $X(t)$ having the autocorrelation function $R_{X X}(\tau)=A \delta(\tau)$ is applied to a linear system at time $t=0$ where $f(\tau)$ represent the impulse function. The linear system has the impulse response of $h(t)=e^{-b t} u(t)$ where $u(t)$ represents the unit step function. Find $R_{Y Y}(\tau)$. Also find the mean and variance of $Y(t)$.

Or

(b) (i) If $\{X(t)\}$ is a WSS process and if $Y(t)=\int_{-\infty}^{\infty} h(\xi) X(t-\xi) d \xi$ then prove that
(1) $\quad R_{X Y}(\tau)=R_{X X}(\tau) * h(\tau)$ where * stands for convolution.
(2) $S_{X Y}(\omega)=S_{X X}(\omega) H^{*}(\omega)$.
(ii) If $\{N(t)\}$ is a band limited white noise centered at a carrier frequency ω_{0} such that $S_{N N}(\omega)=\left\{\begin{array}{ll}\frac{N_{0}}{2}, & \text { for }\left|\omega-\omega_{0}\right|<\omega_{B} \\ 0, & \text { elsewhere. }\end{array}\right.$ Find the autocorrelation of $\{N(t)\}$.

