ANNA UNIVERSITY COIMBATORE
 B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009
 REGULATIONS - 2007

 FOURTH SEMESTER - ELECTRONICS AND COMMUNICATION ENGINEERING

 FOURTH SEMESTER - ELECTRONICS AND COMMUNICATION ENGINEERING 070030011 - PROBABILITY THEORYAND RANDOM PROCESS

 070030011 - PROBABILITY THEORYAND RANDOM PROCESS}

TIME : 3 Hours
Max.Marks : 100

PART - A

(20 $\times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

If A, B, and C are any three events such that $P(A)=P(B)=P(C)=1 / 4, P(A \cap B)$ $=P(B \cap C)=0, P(C \cap A)=1 / 8$. Find the probability that atleast one of the events A, B or C occurs.
2. A continuous random variable X has a pdf $f(x)=k x^{2} e^{-x} ; x \geq 0$. Find k and the mean.
3. Find the moment generating function for the distribution

$$
f(x)=\begin{gathered}
2 / 3 \text { at } x=1 \\
1 / 3 \text { at } x=2 \\
0 \text { otherwise }
\end{gathered}
$$

4. The joint pdf of X and Y is given by

$$
\begin{aligned}
f(x, y)= & x^{3} y^{3} / 16 \quad 0 \leq x \leq 2,0 \leq y \leq 2 \\
& \text { O otherwise. }
\end{aligned}
$$

Find $f_{x}(x)$.
5. The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8 . Find the probability that this computer will function for a month without a breakdown.
6. Define the uniform distribution of a continuous random variable X.
7. The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda=1 / 2$. What is the probability that the repair time exceeds 2 hours?

Write the mean and variance of the binomial distribution
What are the four classifications of a random process?
Examine whether the Poison process $\{X(\mathrm{t})\}$, given by the probability law $P[X(t)=r]=e^{-\lambda t}(\lambda, t)^{r} / L r,\{r=0,1,2, \ldots\}$ is covariance stationary
In the fair coin experiment, we define the process $\{X(t)\}$ as follows

$$
X(t)=\sin \pi t \text {, if head appears }
$$

$2 t$ if tail appears.
Find $E\{X(t)\}$.
If $\{\mathrm{X}(\mathrm{t})\}$ is a wide-sense stationary process with autocorrelation $R(\tau)=A e^{-\alpha t}$, determine the second order moment of the random variable $X(8)-X(5)$
Define autocorrelation.
Given that the autocorrelation function for a stationary ergodic process with no periodic components is $R_{x x}(\tau)=25+\left(4 /\left(1+6 \tau^{2}\right)\right)$. Find the mean value and variance of the process $\{X(t)\}$
State Wiener-Khinchine theorem.
Find the power spectral density of the random telegraph signal with auto correlation function $\mathrm{R}(\tau)=\mathrm{a}^{2} \mathrm{e}^{-2 \gamma / \tau}$
Define Gaussian process.
Write a note on noise in communication system.
What is.half wave linear detector process?
Name the commonly used filters in electrical systems and define them mathematically.

PART - B

ANSWER ANY FIVE QUESTIONS

21. The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y)=$ $x y^{2}+x^{2} / 8,0 \leq x \leq 2,0 \leq y \leq 1$. Compute $P(X>1), P(Y<1 / 2), P(X>1 / Y<1 / 2)$ and $P(X+Y \leq 1)$.
22. a) If X is a random variable with probability distribution

$$
\begin{array}{cccc}
x: & 1 & 2 & 3 \\
p(X): & 1 / 6 & 1 / 3 & 1 / 2
\end{array}
$$

Find its mean , variance and $E\left(4 X^{3}+3 X+11\right)$
b) Find the mean and variance of the geometric distribution.
23. State and prove the memory less property of the exponential distribution
24. Given a random variable with characteristic function $\phi(\omega)=E\left\{e^{i \omega Y}\right\}$ and a random process defined by $X(t)=\cos (\lambda t+Y)$, show that $\{X(t)\}$ is stationary in the wide sense.
25. a) Two random process $X(t)$ and $Y(t)$ are defined by $X(t)=A \cos \omega_{0} t+B \sin \omega_{0} t$ and $Y(t)=B \cos \omega_{0} t-A \sin \omega_{0} t$. Show that $X(t)$ and $Y(t)$ are jointly widesense stationary, if A and B are uncorrelated random variables with zero means and same variances, where ω_{0} is a constant.
b) Define cross-correlation function and state any four of its properties.

State Mean-Ergodic process. Also state and prove Mean-Ergodic theorem
27. a) The power spectral density function of a zero mean $W S S$ process $\{X(t)\}$ is given by

$$
\begin{aligned}
S(\omega)= & 1 \text { if }|\omega|<\omega_{0} \\
& 0 \text { elsewhere }
\end{aligned}
$$

Find $R(\tau)$ and show also that $X(t)$ and $X\left(t+\tau / \omega_{0}\right)$ are uncorrelated
b) Define (a)Thermal noise (b)White noise
28. If $\{X(t)\}$ is a Gaussian process with $\mu(t)=10$ and $C\left(t_{1}, t_{2}\right)=16 e^{-1 t_{1}-t_{2}}$ find the probability that (i) $X(10) \leq 8$ and (ii) $|X(10)-X(6)| \leq 4$.

