ANNA UNIVERSITY COIMBATORE	8.	Write the mean and variance of the binomial distribution.
B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009	9.	What are the four classifications of a random process?
REGULATIONS - 2007	10.	Examine whether the Poison process $\{X(t)\},$ given by the probability law
FOURTH SEMESTER - ELECTRONICS AND COMMUNICATION ENGINEERING		$P[X(t)=r] = e^{-\lambda t}(\lambda, t)^r / \lfloor r, \{r=0, 1, 2,\}$ is covariance stationary
070030011 - PROBABILITY THEORYAND RANDOM PROCESS	11.	In the fair coin experiment, we define the process $\{X(t)\}$ as follows.
E: 3 Hours Max.Marks :	100	$X(t) = \sin \pi t$, if head appears
PART – A		2t if tail appears.
(20 x 2 = 40 MAR	KS)	Find $E{X(t)}$.
ANSWER ALL QUESTIONS	12.	If {X(t)} is a wide-sense stationary process with autocorrelation
If A,B,and C are any three events such that P(A) = P(B) = P(C)=1/4, P(A \cap B)		$R(\tau)$ = Ae ^{-\alpha t} , determine the second order moment of the random variable
= P(B \odot C) =0, P(C \odot A) =1/8. Find the probability that atleast one of the		X(8) - X(5).
events A,B or C occurs.	13.	Define autocorrelation.
A continuous random variable X has a pdf f(x) = kx^2e^{-x} ; x \geq 0. Find k and the	14.	Given that the autocorrelation function for a stationary ergodic process with
mean.		no periodic components is $R_{XX}(\tau) = 25 + (4/(1+6\tau^2))$. Find the mean value
Find the moment generating function for the distribution		and variance of the process {X(t)}.
2/3 at x = 1	15.	State Wiener-Khinchine theorem.
f(x) = 1/3 at $x = 2$	16.	Find the power spectral density of the random telegraph signal with auto
0 otherwise		correlation function $R(\tau)=a^2e^{-2\gamma \tau }$
The joint pdf of X and Y is given by	17.	Define Gaussian process.
$f(x,y) = x^3y^3/16 0 \le x \le 2, \ 0 \le y \le 2$	18.	Write a note on noise in communication system.
0 otherwise.	19.	What is half wave linear detector process?
Find $f_X(x)$.	20.	Name the commonly used filters in electrical systems and define them
The number of monthly breakdowns of a computer is a random variable		mathematically.
having a Poisson distribution with mean equal to 1.8. Find the probability that		

- $X(t) = \sin \pi t$, if head appears 2t if tail appears. is a wide-sense stationary process with autocorrelation determine the second order moment of the random variable correlation.
- the autocorrelation function for a stationary ergodic process with

4

- components is $R_{XX}(\tau) = 25 + (4/(1+6\tau^2))$. Find the mean value e of the process {X(t)}.
- er-Khinchine theorem.
- ower spectral density of the random telegraph signal with auto function $R(\tau) = a^2 e^{-2\gamma |\tau|}$
- ssian process.
- on noise in communication system.
- wave linear detector process?
- commonly used filters in electrical systems and define them ally.

2

Define the uniform distribution of a continuous random variable X.

this computer will function for a month without a breakdown.

TIME : 3 Hours

1

2

3.

4

5.

6.

7.

The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. What is the probability that the repair time exceeds 2 hours?

PART - B

$(5 \times 12 = 60 \text{ MARKS})$

6

6

6

6

26.

ANSWER ANY FIVE QUESTIONS

- 21. The joint pdf of a two dimensional random variable (X,Y) is given by $f(x,y) \approx xy^2+x^2/8$, $0 \le x \le 2, 0 \le y \le 1$. Compute $P(X > 1), P(Y < \frac{1}{2}), P(X > 1/Y < 1/2)$ and $P(X+Y \le 1)$.
- 22. a) If X is a random variable with probability distribution X : 1 2 3 p(X) : 1/6 1/3 $\frac{1}{2}$ Find its mean ,variance and E(4X³+3X+11)
 - b) Find the mean and variance of the geometric distribution.
- 23. State and prove the memory less property of the exponential distribution
- 24. Given a random variable with characteristic function $\phi(\omega) = E\{e^{ie^{Y}}\}$ and a random process defined by $X(t) = \cos(\lambda t+Y)$, show that $\{X(t)\}$ is stationary in the wide sense.
- 25. a) Two random process X(t) and Y(t) are defined by X(t) = Acos ω_ot + Bsin ω_ot and Y(t) = Bcos ω_ot -A sin ω_ot. Show that X(t) and Y(t) are jointly wide-sense stationary, if A and B are uncorrelated random variables with zero means and same variances, where ω_o is a constant.
 - b) Define cross-correlation function and state any four of its properties.

State Mean-Ergodic process. Also state and prove Mean-Ergodic theorem

 a) The power spectral density function of a zero mean WSS process {X(t)} is given by

$S(\omega) = 1$ if $|\omega| < \omega_0$

0 elsewhere

Find R(τ) and show also that X(t) and X(t + τ / ω_0) are uncorrelated.

- b) Define (a)Thermal noise (b)White noise.
- 28. If {X(t)} is a Gaussian process with $\mu(t) = 10$ and $C(t_1, t_2) = 16e^{-|t_1 t_2|}$ find the probability that (i)X(10) ≤ 8 and (ii) |X(10) X(6)| ≤ 4 .

*****THE END*****