ANNA UNIVERSITY COIMBATORE

B.E. I B.TECH. DEGREE EXAMINATIONS : JUNE 2009
 REGULATIONS - 2007
 FOURTH SEMESTER: ECE BRANCH
 070030011 - PROBABILITY THEORY AND RANDOM PROCESS

TIME : 3 Hours
Max.Marks : 100

PART - A

($20 \times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

1. The M.C.A. class consist of 60 students, In that 5 of them are girls, 20 of them are rich, 10 them are fair complexioned. What is the probability of selecting a fair complexioned rich girl?
2. Verify whether $f(x)=\left\{\begin{array}{l}|x|, \text { if }-1 \leq x \leq 1 \\ 0, \text { other wise }\end{array}\right.$ can be the p.d.f of a continuous random variable
3. If the M.G.F of a random variable is $\frac{2}{2-t}$. Find the S.D of X
4. If $f(x, y)=4 x y e^{-\left(x^{2}+y^{2}\right)}$ for $x, y \geq 0$. Examine if x, y are independent
5. Find the M.G.F. of the Geometric Distribution $P(X=x)=q^{x-1} p, x=1,2,3,4 \ldots \ldots$
6. The cumulative distribution function of a random variable X is given by

$$
F(x)=\left\{\begin{array}{cll}
0 & \text { if } & x \leq 0 \\
\frac{x}{2 \pi} & \text { if } & 0<x \leq 2 \pi \\
1 & \text { if } & x>2 \pi
\end{array}\right.
$$

Find the p.d.f. of X and show that X has a uniform distribution in the interval
$(0,2 \pi)$. Find also $P(\pi / 4 \leq X \leq \pi / 2)$
7. If X is poisson variate such that $P(X=0)=0.5$, Find $\operatorname{Var}(X)$
8. The mean and variance of a binomial distribution are 4 and $4 / 3$ respectively. Find $P(X \geq 1)$, if $n=6$.
9. What is the difference between a random variable and random process?
10. Define wide - sense stationary process.
11. Define a Gaussian process
12. Prove that the Poisson process is a Markov process
13. If $\mathrm{R}(\tau)$ is the Auto correlation function prove that $\mathrm{R}(\tau)=\mathrm{R}(-\tau)$
14. Find the variance of the stationary process $(X(t))$, whose auto correlation function is given by

$$
R(\tau)=16+\frac{9}{1+6 \tau^{2}}
$$

15. Define the cross - correlation function
16. Define the power spectral density function of a stationary process
17. Find the mean - square value (or the average power) of the process $(X(t)$) if its Auto correlation function is given by $R(\tau)=e^{-\tau^{2 / 2}}$
18. State Wiener - Khinchine theorem
19. Find the power spectral density function of a stationary process whose auto correlation function is $\mathrm{e}^{-\mid \tau}$
20. The Auto correlation function of the white noise is given by $\mathrm{R}_{\mathrm{NN}}(\tau)=\frac{N_{0}}{2} \mathrm{E}(\mathrm{t})$. Find spectral density of white noise.
PART - B
($5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

21. (a) A continuous random variable X has p.d.f.

$$
\begin{equation*}
f(x)=k x^{2} e^{-x}, x>0 \text {, find } k \text {, mean and variance. } \tag{6}
\end{equation*}
$$

21. (b) A random variable X has the following probability distribution.

x	0	1	2	3	4	5	6	7	8
$P(x)$	a	$3 a$	$5 a$	$7 a$	$9 a$	$11 a$	$13 a$	$15 a$	$17 a$

i. Find a,
ii. Find the distribution function of X
iii. What is the smallest value of x for which $P(X \leq x)>0.5$
22. (a) Find the M.G.F. of the Exponential distribution and deduce its mean and variance.
(b) Prove that all the odd ordered central moments about mean of a normal distribution vanish.
23. (a) Define Gamma distribution and find its M.G.F
(b) The daily consumption of milk in the city in excess of 20,000 gallons, is approximately distributed as a gamma variate with the parameters $k=2$ and λ $=1 / 10,000$. The city has a daily stock of 30,000 gallons. What is the probability that the stock is insufficient on a particular day.
24. (a) Two random variables X and Y have the following joint p.d.f.
$f(x, y)=k(4-x-y)$ for $0 \leq x \leq 2, o \leq y \leq 2$. Find k, Marginal distributions of X and Y and conditional distribution of Y given X.
(b) Suppose that customers arrive at a bank according to a poisson process with a mean rate of 3 per minute. Find the probability that during a time interval of 2 min
i. exactly 4 customers arrive
ii. More than 4 customers arrive
25. a) Three boys A, B, and C are throwing a ball to each other. A always throws the bali to B and B aiways throws the bali to C, but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix and classify the states.
(b) The auto correlation function of the random telegraph signal process is given by $R(\tau)=a^{2} e^{-2 \gamma|\tau|}$

Determine the power density spectrum of the random telegraph signal
26. (a) Show that the process $(X(t)), X(t)=A \cos (\omega t+\theta)$ where A and ω are constants. Θ is uniformly distributed in $[-\pi, \pi]$ is wide sense stationary
(b) If $(X(t))_{n}$ and $(Y(t))$ are two random process then show that $\left|R_{x y}(\tau)\right| \leq \sqrt{R_{x x}(0) R_{y y}(0)}$ where $\mathrm{R}_{x x}(\tau)$ and $\mathrm{R}_{y y}(\tau)$ are their respective auto correlation functions.
27. (a) If the power spectral density of a WSS process is given by

$$
\begin{cases}\frac{b}{a}(a-|\omega|), \text { if }|\omega| \leq a \\ 0 & \text { if }|\omega|>a\end{cases}
$$

Find the auto correlation function of the process
(b) Find the power spectral density of a WSS process with auto correlation

Function. $\mathrm{R}(\tau)=\mathrm{e}^{-\mathrm{a}_{\tau}{ }^{2}}$
28. (a) Prove that if the input to a time - invariant stable linear system is a WSS process, the output will also be a WSS process.

