ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : JUNE 2009

REGULATIONS - 2007

FOURTH SEMESTER : ECE BRANCH

070030011 - PROBABILITY THEORY AND RANDOM PROCESS

TIME : 3 Hours

Max.Marks: 100

PART - A

(20 x 2 = 40 MARKS)

ANSWER ALL QUESTIONS

 The M.C.A. class consist of 60 students, In that 5 of them are girls, 20 of them are rich, 10 them are fair complexioned. What is the probability of selecting a fair complexioned rich girl?

|x|, if $-1 \le x \le 1$

- Verify whether $f(x) = \begin{cases} 0 \\ 0 \end{cases}$, other wise can be the p.d.f of a continuous random variable
- 3. If the M.G.F of a random variable is $\frac{2}{2-t}$. Find the S.D of X
- 4. If $f(x,y) = 4xy e^{-(x^2+y^2)}$ for $x,y \ge 0$. Examine if x,y are independent
- 5. Find the M.G.F. of the Geometric Distribution $P(X=x) = q^{x-1} p, x = 1,2,3,4...$
- 6. The cumulative distribution function of a random variable X is given by

$$F(x) = \begin{cases} 0 & \text{if } x \le 0 \\ \frac{x}{2\pi} & \text{if } 0 < x \le 2\pi \\ 1 & \text{if } x > 2\pi \end{cases}$$

Find the p.d.f. of X and show that X has a uniform distribution in the interval (0, 2 π). Find also P($\pi/4 \le X \le \pi/2$)

- 7. If X is poisson variate such that P(X=0) = 0.5, Find Var (X)
- The mean and variance of a binomial distribution are 4 and 4/3 respectively. Find P(X≥1), if n ≈ 6.
- 9. What is the difference between a random variable and random process?
- 10. Define wide sense stationary process.
- 11. Define a Gaussian process
- 12. Prove that the Poisson process is a Markov process.
- 13. If $R(\tau)$ is the Auto correlation function prove that $R(\tau) = R(-\tau)$
- Find the variance of the stationary process (X(t)), whose auto correlation function is given by

$$R(\tau) = 16 + \frac{9}{1+6\tau^2}$$

- 15. Define the cross correlation function
- 16. Define the power spectral density function of a stationary process
- 17. Find the mean square value (or the average power) of the process (X(t)) if its Auto correlation function is given by $R(\tau) = e^{-\tau^2/2}$
- 18. State Wiener Khinchine theorem
- Find the power spectral density function of a stationary process whose auto correlation function is e^{-| T |}
- 20. The Auto correlation function of the white noise is given by $R_{NN}(\tau) = \frac{N_0}{2} E(t)$. Find spectral density of white noise.

PART - B

(5 X 12 = 60 MARKS)

ANSWER ANY FIVE QUESTIONS

21. (a) A continuous random variable X has p.d.f.

 $f(x) = k x^2 e^{-x}$, x >0, find k, mean and variance.

21.	(b) A random variable X has the following probability distribution.											
	x P(x)	0 a	1 3a	2 5a	3 7a	4 9a	5 11a	6 13a	7 15a	8 17a		
	i. Find a,											
	ii. Find the distribution function of X											
	iii. What is the smallest value of x for which $P(X \le x) > 0.5$ (6)											
22.	(a) Find the N	I.G.F. o	f the E	xpone	ential	distrib	ution a	ind de	duce its	s mean		
	and variar	nce.									(6)	
	(b) Prove that all the odd ordered central moments about mean of a normal											
	distribution	ı vanish	•								(6)	
23.	(a) Define Ga	, mma di	stribut	ion an	id find	its M.	G.F.				(6)	
	(b) The daily consumption of milk in the city in excess of 20,000 gallons, is											
	approximately distributed as a gamma variate with the parameters k = 2 and λ											
	= 1/10,000. The city has a daily stock of 30,000 gallons. What is the											
	probability tha	t the sto	ock is	insuffi	cient	on a p	articula	ar day			(6)	
24.	(a) Two random variables X and Y have the following joint p.d.f. $f(x,y) = k (4-x-y)$ for $o \le x \le 2$, $o \le y \le 2$. Find k, Marginal distributions of X and											
	Y and conditional distribution of Y given X. (6											
	(b) Suppose that customers arrive at a bank according to a poisson process											
	with a mean rate of 3 per minute. Find the probability that during a time interval of 2 min											
	i. exactly 4 customers arrive											
	ii. More than 4	custon	ners a	rrive							(6)	

.

.

25.	a) Three boys A,B, and C are throwing a ball to each other. A always thro	WS
	the ball to B and B always throws the ball to C, but C is just as likely to the	row
	the ball to B as to A. Show that the process is Markovian. Find the transi	tion
	matrix and classify the states.	(6)
	(b) The oute correlation function of the readom teleproph signal assess	_
	(b) The auto correlation function of the random telegraph signal process is given by R (τ) = $\alpha^2 e^{-2\gamma \tau }$	5
	Determine the power density spectrum of the random telegraph signal.	(6)
26.	(a) Show that the process (X(t)), X (t) = A cos (ω t+ θ) where A and ω are	
	constants. Θ is uniformly distributed in [- π,π] is wide sense stationary	(6)
	(b) If $(X(t))_n$ and $(Y(t))$ are two random process then show that	
	$ R_{xy}(\tau) \leq \sqrt{R_{xx}(0)R_{yy}(0)}$ where $R_{xx}(\tau)$ and $R_{yy}(\tau)$ are their respectively.	tive
	auto correlation functions.	(6)
27.	(a) If the power spectral density of a WSS process is given by	
	$\begin{cases} \frac{b}{a}(a- \omega), \text{ if } \omega \le a \\ 0 \text{ if } \omega > a \end{cases}$	
	Find the auto correlation function of the process	(6)
	(b) Find the power spectral density of a WSS process with auto correlation	l.
	Function. $R(\tau) = e^{-\alpha \tau^2}$	(6)
28.	(a) Prove that if the input to a time - invariant stable linear system is a WS	S
	process, the output will also be a WSS process.	(6)

4

3