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Answer ALL questions.

PART - A (10 x 2 = 20 Marks)

1. Let X be a discrete R.V. with probability mass function

P(X = x) = { ;0 ,x = 1, 2, 3, 4,
o ,otherwise

.Compute P(X < 3) and E (~ X).

2. If a R.V X has the moment generating function Mit) = 3 ~ t' compute E(X2).

3. The joint p.d.f. of R.V. (X,Y) is given as f(x, y) = { !'0 < y <x s 1
o , otherwise

Find the marginal p.d.f. ofY.
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4. Let X and Y be two independent R.Vs with Var(X) = 9 and Var(Y) = 3.

Find Var(4X - 2Y + 6).

5. The random process X(t) is given by X(t) = Y cos(27tt), t> 0, where Y is a R.V. with

E(Y) = 1. Is the process X(t) stationary?

6. Derive the autocorrelation function for a Poisson process with rate A..

7. For an M/M/CIN FCFS (C < N) queueing system, write the expressions for Po and PN.

8. Define (i) balking and (ii) reneging of the customers in the queueing system.

9. An M/D/1 queue has an arrival rate of 10 customers per second and a service rate of

20 customers per second. Compute the mean number of customers in the system.

10. Write a expression for the traffic equation ofthe open Jackson queueing network.

PART - B (5 X 16 = 80 Marks)

11. (a) (i) The probability mass function of a discrete R.V X IS given In the
following table:

X -2 -1 0 1 2 3

P(X =x) 0.1 k 0.2 2k 0.3 k

Find (1) the value ofk (2) P(X < 1) (3) P(- 1 < X s2) (4) E(X). (8)

(ii) Let X be a continuous R.V with probability density function

f(x) = { xe= ,x > 0o ,otherwise

Find (1) the cumulative distribution function of X

(2) Moment Generating Function Mx(t) of X

(3) P(X < 2)

(4) E(X). (8)

OR
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. . . (3) (1)x-I
(b) (i) . Let P(X = x) = 4' 4' ,x = 1,2,3, ....., be the probability mass function

of a R.Y X Compute (8)

(1) P(X > 4)

(2) P(X > 41X > 2)

(3) E(X)

(4) Yar(X)

(ii) Let X be a uniformly distributed R.Y. over [-5, 5]. Determine (8)

(1) P(X s 2)
•

(2) P(IXI> 2)

(3) Cumulative distribution function of X

(4) Var (X)

12. (a) (i) Find the constant k such that

ttx ) = { k(x + 1)e-Y , 0 <x < 1 ,y > 0
, Yo, otherwise

is a joint p.d.f. of the continuous R.Y. (X, V). Are X and Y independent

R.Ys ? Explain. (8)

(ii) The joint p.d.f. of the continuous R.Y. (X, Y) is given as

{
e-(x + Y) x > 0 y > 0

fi( ) "x, y = 0 otherwise,

Find the p.d.f. of the R;Y U = ~. (8)

OR
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(b) (i) Let the joint p.d.f. ofR.V. (X, Y) be given as ,',' (8)

{
Cxy20<x<y<1

f(x, y) = 0 ' -th - . - Determine (1) the value of C (2) the
, 0 erwtse

marginal p.d.fs of X and Y (3) the conditional p.d.f. f(x/y) of X given

Y=y

(ii) A joint probability mass function of the discrete R.Vs X and Y is given as

P(X = x, Y = y) = {X;l ,x = 1,2, Y = 1,2, 3, 4
o ,otherwise

Compute the covariance of X nd Y.

13. (a) (i) Consider a random process Y(t) = X(t) cos(wot + e), where X (t) is wide-

sense stationary process, e is a uniformly distributed R.V. over (-x, x) and

Wois a constant. It is assumed that X(t) and e are independent. Show that

Y(t) is a wide-sense stationary.

(ii) Consider a Markov chain {X; ; n = 0, 1, 2, .... } having state space

S = {I, 2} and one-step

TPM P=[ ~ ~].
10 10

(8)

(8)

(I) Draw a transition diagram.

(2) Is the chain irreducible?

(3) Is the state-I ergodic? Explain.

(4) Is the chain ergodic? Explain.

OR

(b) (i) Let X(t) and Y(t) be two independent Poisson processes with parameters

A.I and ~ respectively. Find

(1) P(X(t) + Y(t» = n, n = 0, 1,2,3, ,

(2) P(X(t) - Y(t» = n, n = 0, ±I, ±2, . (8)
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(ii) Consider a Markov chain {Xn; n = 0, 1, 2, ... } having state space S = {I,

2, 3} and one-step TPM P = [i ~i] and initial probability

100

distribution P(Xo = i) = t, i = 1, 2, 3.

Compute

(1) P(X3 = 2, X2 = 1, XI = 2 / Xo = 1)

(2) P(X:3= 2, X2 = I/X, = 2, Xo = 1)

(3) P(X2 = 2IXo = 2)

(4) Invariant probabilities of the Markov chain.
e

(8)

14. (a) (i) Customers arrive at a watch repair shop according to a Poisson process at

a rate of 1 per every 10 minutes, and the service time is an exponential

random variable with mean 8 minutes. Compute (8)

(1) the mean number of customers L, in the system.

(2) the mean waiting time W s of a customer spends in the system,

(3) the mean waiting Wq of a customer spends in the queue,

(4) the probability that the server is idle.

(ii) A petrol pump station has 4 petrol pumps. The service time follows an

exponential distribution with mean of 6 minutes and cars arrive for service

in a Poisson process at the rate of 30 cars per hour.

(1) Find the probability that no car is in the system.

(2) What is the probability that an arrival will have to wait in the

queue?

(3) Find the mean waiting time in the system. (8)

OR
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(b) (i) A one person barber shop has 6 chairs to accommodate people waiting for- ,. ,.
a haircut. Assume that customers who arrive when all the 6 chairs are full

leave without entering the barber shop. Customers arrive at the rate of 3

per hour

Compute

'(I) Po

(2) Lq

(3) P7

(4) Ws

and spend an average of 15 minutes in the barber's chair.

•

(8)

(ii) Consider a single-server queue where the arrivals are Poisson with rate

A = 10 / hour. The service distribution is exponential with rate J.l = 5/hour.

Suppose that customers balk at joining the queue when it is too long.

Specifically, when there are 'n' in the system, an arriving customer joins

the queue with probability (n! 1)' Determine the steady-state probability

that there are 'n' customers in the system. (8)

15. (a) Discuss an M/G/lloo FCFS queueing system and hence obtain the Pollaczek-

Khintchine (P-K) mean value formula. Deduce also the mean system size for the

MlM/lIoo : FCFS queueing system from the P-K formula. (16)

OR
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(b) (i) The police department has 5 patrol cars. A patrol car breaks down and

repairs service one every 30 days. The police department has two repair

workers, each of whom takes an average of 3 says to repair a car.

Breakdown times and repair time are exponential. Determine the average

number of patrol cars in good condition. Also find the average down time

for a patrol car that needs repairs. (8)

(ii) A repair facility is shared by a large by a large number of machines for.

repair. The facility has two sequential stations with respective rates of

service 1 per hour and 3 per hour. The cumulative failure rate of all the

machines is 0.5 per hour. Assuming that the system behaviour may be

approximated by a two-station tandem queue. Find

(1) the average number of customers in both station,

(2) the average repair time,

(3) the probability that both service stations are idle. (8)
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