ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
 B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011

PART - B
REGULATIONS : 2008
FOURTH SEMESTER

080380009 - PROBABILITY AND RANDOM PROCESSES

(COMMON TO BIOMEDICAL / ECE)

Time : 3 Hours

PART - A

ANSWER ALL QUESTIONS

1. Given the random variable with density function $f(x)=2 x, 0<x<1=0$, elsewhere, find the p.d.f of $Y=8 X^{3}$
2. If a boy throwing stones at a target, what is the probability that his $10^{\text {th }}$ throw is his $5^{\text {th }}$ hit, if the probability of hitting the target at any trail is $1 / 2$
3. The Joint p.d. f of two dimensional variable (X, Y) is given by $f(X, Y)=2$, $0<X<1,0<Y<2=0$, elsewhere, find the Marginal density function of X and Y
4. If X and Y are independent random variables, find the correlation coefficient between X and Y
5. What are the difference between a SSS process and WSS process
6. State any two process of Poisson process
7. Define cross correlation function and state any two of its properties
8. State Wiener - Khinchin theorem of a random process
9. Explain time invariant system
10. Describe Band pass noise.

Max. Marks : 100

ANSWER ALL QUESTIONS

11. (a) (i). In a normal distribution, 31% of the items are under 45 and 8% are above 64 Find mean and variance of the distribution
(ii). Derive mean and variance of Gamma distribution

(OR)

11.(b) (i). A and B shoot independently until each has hit his target. The probability of their hitting the target at each shot are $3 / 5$ and $5 / 7$ respectively. Find the probability that B will require more shots than A
(ii). Derive the MGF of Normal distribution
12.(a) (i). Find the mean value of X and Y and coefficient of correlation from the equations $2 Y-X=50 \& 3 Y-2 X=10$
(ii). The joint probability density function of random variables X and Y is $f(x, y)=8 x y, 0<x<1,0<y<x=0$, elsewhere, find the conditional probability function of X and $Y \& Y$ and X

(OR)

12.(b) (i). If the joint probability density function of random variables X and Y is $f(x, y)=K(6-x-y), 0<x<2,2<y<4=0$, elsewhere, find (1) the value of $K(2)$ $P(x+y)<3$ and (3) $P[x<1 / y<3]$
(ii). A coin is tossed 10 times. What is the probability of getting 3 or 4 or 5 heads by using Central limit theorem
13.(a) (i). Show that the random process $X(t)=A \cos (\omega t+\theta)$ is a WSS process, if A and ω are constants and θ is uniformly distributed random variable in $(0,2 \pi)$
(ii). Three boys A, B, C are throwing a ball each other. A always throw the ball to B and B always throw the ball to C. But C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Also find the transition matrix and classify the states

(OR)

(b) (i). Suppose that a customer arrives at a bank according to Poisson process with a mean rate of 3 per minutes, find the probability that a time interval of 2 minutes (a) exactly 4 customers arrive and (b) more than 4 customers arrive
(ii). In the fair coin experiment, we define the process $X(t)$ as follows.
$X(t)=\sin (\pi t)$, if head shows and $=2 t$, if tail shows, find (a) $E[X(t)]$ and
(b) $F[x(t)]$ for $t=0.25$
14.(a) (i). Determine mean and variance of $R_{x x}\left(r^{\prime}\right)=\left[\left(4 r^{2}+100\right) /\left(r^{2}+4\right)\right]$
(ii). If $X(t)$ and $Y(t)$ are two WSS random processes and $E\left\{[X(0)+Y(0)]^{2}\right\}=0$, prove that $R_{x x}\left({ }^{\prime}\right)=R_{x y}\left({ }^{(}\right)=R_{y y}\left({ }^{(}\right)$

(OR)

(b) (i). Determine $R_{x x}\left(r^{\prime}\right)$ if $\delta_{x x}(\omega)=\left[1 /\left(4=\omega^{2}\right)^{2}\right]$
(ii). Find the auto correlation function of random process $X(t)=\sin (\omega t+\Phi)$ where ω is a constant and Φ is a random variable uniformly distributed in $(0,2 \pi)$
15.(a) (i). Determine the auto correlation of white noise
(ii). If the input to a linear time - invariant system is a zero mean, while Gaussian process $\{N(t)\}$ and $\{y(t)\}$ is the output. Prove that $E[Y(t)]=0$ and $\delta_{y y}(\omega)=$ $\left[N_{0}(N(\omega))^{2}\right] / 2$

(OR)

15. (b) (i). If $N(t)$ is a band limited white noise such that $\delta_{N N}(\omega)=N_{0} / 2$, for $|\omega|<\omega_{g}$ $=0$, elsewhere, find the auto correlation function of $N(t)$
(ii). A source of noise is a Gaussian with a mean of 0.4 V and a S.D of 0.15 V . For what percentage of time would you expect the measured noise voltage to exceed 0.7V
