
Question Paper Code : 80609

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester
Electronics and Communication Engineering
MA 6451 - PROBABILITY AND RANDOM PROCESSES
(Common to Biomedical Engineering, Robotics and Automation Engineering)
(Regulations 2013)
Time : Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A $-(10 \times 2=20$ marks $)$

1. A random variable X is known to have a distribution function $F(x)=u(x)\left[1-e^{-x^{2} / b}\right]$, where $b>0$ is a constant. Determine its density function.
2. Find the expected value of the discrete random variable X with the probability mass function $p(x)=\left\{\begin{array}{ll}\frac{1}{3} & ; x=0 \\ \frac{2}{3} & ; x=2\end{array}\right.$.
3. Can $Y=5+2.8 x$ and $x=3-0.5 y$ be the estimated regression equations of y on x respectively explain your answer.
4. The joint probability density function of the random variable x and y is defined as $f(x, y)=\left\{\begin{array}{cl}25 e^{-5 y} ; & 0<x<0.2, y>0 \\ 0 & \text { otherwise }\end{array}\right.$. Find the marginal PDFs of x and y.
5. Let $A=\left(\begin{array}{cc}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right)$ be a stochastic matrix. Check whether it is regular.
6. Prove that random telegraph process $\{Y(t)\}$ is a wide sense stationary process.
7. Prove that auto correlation function is an even function of τ.
8. Find the power spectral density of the random process $\{X(t)\}$ whose auto correlation is $R(\tau)=\left\{\begin{array}{cc}-1 ; & -3<\tau<3 \\ 0 ; & \text { otherwise }\end{array}\right.$.
9. When a system is said to be stable?
10. Assume that the input $X(t)$ to a linear time - invariant system is white noise. What is the power spectral density of the output process $Y(t)$ if the system response $H(w)$ is $H(w)=\left\{\begin{array}{cc}1 & w_{1}<|w|<w_{2} \\ 0 & \text { otherwise }\end{array}\right.$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) If the probability of success is $1 / 100$, how many trials are necessary in order that the probability of atleast one success is greater than $1 / 2$?
(ii) Find the moment generating function of Gamma distribution, with one parameter K and hence find its mean and variance.

Or

(b) (i) A and B shoot independently until each has his own target. The probability of their hitting the target at each shot is $3 / 5$ and $5 / 7$ respectively? Find the probability that B will require more shots than A.
(ii) If $\log _{e}^{x}$ is normally distributed with mean 1 and variance 4, find $P(1 / 2<x<2)$ given that $\log _{e}^{2}=0.693$.
12. (a) (i) Given the following bivariate probability distribution obtain
(1) Marginal distributions of x and y
(2) Conditional distribution of x given $y=2$.
(ii) Find the coefficient of correlation between industrial production and export using the following data.
Production $(x): \quad \begin{array}{lllllll}55 & 56 & 58 & 59 & 60 & 60 & 62\end{array}$
Export (y): $\quad \begin{array}{llllllll}35 & 38 & 37 & 39 & 44 & 43 & 44\end{array}$

Or

(b) Given the joint density function of x and y as

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{2} x e^{-y} ; & 0<x<2, \quad y>0 \tag{16}\\
0 & \text { elsewhere }
\end{array} . \text {. Find the distribution } X+Y .\right.
$$

13. (a) (i) The process $X(t)$ whose probability distribution under certain condition is given by $P[X(t)=n]=\left\{\begin{array}{cc}\frac{(a t)^{n-1}}{(1+a t)^{n+1}} ; & n=1,2,3 \ldots \\ \frac{a t}{1+a t}, & n=0\end{array}\right.$. Show that it is not a s.tationary process.
(ii) Customers arrive at a grocery store in a Poission manner at an average rate of 10 customers per hour. The amount of money that each customer spends is uniformly distributed between $\$ 8.00$ and $\$ 20.00$. What is the average total amount of money that customers who arrive over a two-hour interval spend in the store? What is the variance of this total amount?

Or
(b) (i) The transition probability matrix of the Markov chain $\left\{X_{n}\right\}$ with $n=1,2,3$.. having 3 states $1,2,3$ is $P=\left(\begin{array}{lll}0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3\end{array}\right)$ and the initial distribution is $P^{(0)}=(0.70 .20 .1)$. Find $P\left(x_{2}=3\right)$ and $P\left(x_{3}=2, x_{2}=3, x_{1}=3, x_{0}=2\right)$.
(ii) Find the aute correlation function of random telegraph process.
14. (a) (i) If $X(t)=5 \sin (\omega t+\phi), y(t)=2 \cos (\omega t+\phi)$ and ϕ is a random variable distibuted in $(0,2 \pi)$ where ω is a constant and $0+\phi=\frac{\pi}{2}$ find $R_{x x}(\tau), R_{y y}(\tau)$ and verify the property that autocorrelation function is an even function of τ.
(ii) Find the spectral density of WSS random process $\{X(t)\}$ whose auto correlation function is $e^{\frac{-\alpha^{2} r^{2}}{2}}$.

Or
(b) (i) If $X(t)$ and $Y(t)$ are WSS random processes then prove that $\left|R_{x y}(\tau)\right| \leq \sqrt{R_{x x}(0): R_{y y}(0)}$.
(ii) If the power spectral density of a WSS is given by $S(\omega)=\left\{\begin{array}{cc}\frac{b}{a}(a-|w|) & |w| \leq a \\ 0 & |w|>a\end{array}\right.$, find the autocorrelation function of the process.
15. (a) (i) A random process $X(t)$ is the input to a linear system whose impulse response is $h(t)=2 e^{-t} ; t \geq 0$. If the autocorrelation function of the process is $R_{x x}(\tau)=e^{-2|\tau|}$, find the power spectral density of the output process $y(t)$.
(ii) If the input to a time invariant stable line system is a WSS process then prove that the output will also be a WSS process.

Or

(b) (i) If $y(t)$ is the output process when an input process $x(t)$ is applied to the linear time invariant system with impulse response. The autocorrelation function of the output system is $S_{y y}(w)=|H(w)|^{2} S_{x x}(w)$, where $H(w)$ is the system transfer function.(8)
(ii) A linear time invariant system has an impulse response $h(t)=e^{-\beta t} u(t)$. Find the output autocorrelation function $R_{y y}(\tau)$ corresponding to an input $x(t)$.

