Reg. No.:			NUMBER OF STREET
			1

Question Paper Code: 73769

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Fourth Semester

Electronics and Communication Engineering

MA 2261/MA 45/MA 1253/10177 PR 401/080380009 — PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

(Use of statistical tables is permitted)

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define Random Variable, and its classification.
- 2. Find the mgf of geometric distribution.
- 3. The joint pmf of two random variables X and Y is given by

$$P_{X,Y}(x,y) = \begin{cases} kxy, & x = 1, 2, 3; y = 1, 2, 3 \\ 0, & otherwise. \end{cases}$$

Determine the value of the constant k.

- 4. The joint pdf of a random variable (X,Y) is $f_{xy}(x,y) = xy^2 + \frac{x^2}{8}$, $0 \le x \le 2$, $0 \le y \le 1$. Find $P\{X < Y\}$.
- 5. Define a Markov process.
- 6. Prove that the sum of two independent Poisson processes is a Poisson process.
- 7. Find the variance of the stationary process $\{X(t)\}$ whose auto correlation function is given by $R_{XX}(\tau) = 2 + 4e^{-2|\tau|}$.

- 8. Prove that for a WSS process $\{X(t)\}$, $R_{XX}(t,t+\tau)$ is an even function of τ .
- 9. Check whether the system $Y(t) = X^3(t)$ is linear.
- 10. Compare band-limited white noise with ideal low-pass filtered white noise.

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) The members of a girl scout troop are selling cookies from house to house in town. The probability that they sell a set of cookies at any house they visit is 0.4.
 - (1) If they visit 8 houses in one evening, what is the probability that they sold cookies to exactly five of these houses?
 - (2) If they visited 8 houses in one evening, what is the expected number of sets of cookies they sold?
 - (3) What is the probability that they sold their set of cookies atmost in the sixth house they visited? (8)
 - (ii) Suppose X has an exponential distribution with mean equal to 10. Find the value of x such that P(X < x) = 0.95. (8)

Or

- (b) (i) If the moments of a random variable X are defined by $E(X^r) = 0.6$, r = 1, 2... then show that P(X = 0) = 0.4, P(X = 1) = 0.6 and $P(X \ge 2) = 0$.
 - (ii) Find the probability density function of the random variable $y = X^2$ where X is the standard normal variate. (8)
- 12. (a) (i) The joint pdf of a two dimensional random variable (X,Y) is given by $f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$.

Compute
$$P(Y < 1/2), P(X > 1|Y < 1/2)$$
 and $P(X + Y \le 1)$. (8)

(ii) If the independent random variables X and Y have the variances 36 and 16 respectively, find the correlation coefficient between (X+Y) and (X-Y).

Or

- (b) If X and Y are independent random variables with probability density functions $f_X(x) = 4e^{-4x}$, $x \ge 0$; $f_Y(y) = 2e^{-2y}$, $y \ge 0$ respectively, then
 - (i) Find the probability density functions of $U = \frac{X}{X+Y}$, and V = X+Y.

(11)

(2)

- (ii) Are U and V independent?
- (iii) What is P(U > 0.5)? (3)
- 13. (a) (i) Define a semi random telegraph signal process. Prove that it is evolutionary. (10)
 - (ii) Mention any three properties each of auto correlation and of cross correlation functions of a wide sense stationary process. (6)

Or

- (b) (i) A random process X(t) defined by $X(t) = A\cos t + B\sin t$; $-\infty < t < \infty$ where A and B are independent random variables each of which has a value -2 with probability $\frac{1}{3}$ and a value 1 with probability $\frac{2}{3}$. Show that X(t) is a wide sense stationary process. (8)
 - (ii) If $X(t) = Y \cos \omega t + Z \sin \omega t$, where Y, Z are two independent normal random variables with E(Y) = E(Z) = 0, $Var(Y) = Var(Z) = \sigma^2$ and w is a constant, prove that X(t) is a strict sense stationary process of order 2.
- 14. (a) (i) Consider two random processes $X(t) = 3\cos(\omega t + \theta)$, and $Y(t) = 2\cos(\omega t + \theta)$, where θ is a random variable uniformly distributed over $(0, 2\pi)$. Prove that $R_{XY}(\tau) \le \sqrt{R_{XX}(0)R_{YY}(0)}$. (8)
 - (ii) Find the power spectral density of a random signal with auto correlation function $e^{-\lambda|\tau|}$. (8)

Or

- (b) (i) The power spectrum of a wide sense stationary process X(t) is given by $S_{XX}(w) = \frac{1}{\left(1+w^2\right)^2}$. Find the auto correlation function. (8)
 - (ii) Find the cross correlation function corresponding to the cross-power density spectrum $S_{XY}(w) = \frac{8}{(\alpha + jw)^3}$, where $\alpha > 0$ is a constant. (8)

3

15. (a) If X(t) is the input voltage to a circuit (system), Y(t) is the output voltage, $\{X(t)\}$ is a stationary random process with $\mu_x = 0$, and $R_{xx}(\tau) = e^{-\alpha|\tau|}$ then, find μ_y , $S_{yy}(w)$ and $R_{yy}(\tau)$, if the power transfer function is $H(w) = \frac{R}{R+iLw}$, $Y(t) = \int_{-\infty}^{\infty} h(\alpha)X(t-\alpha)d\alpha$. (16)

Oi

- (b) (i) If the input to a time-invariant stable linear system is a wide sense process, then show that the output also is a wide sense process. (8)
 - (ii) If the output of the input X(t) is defined by $Y(t) = \frac{1}{T} \int_{t-T}^{T} X(s) \, ds$, then show that X(t) and Y(t) are related by means to convolution integral. Also find the unit impulse response of the system. (8)