\square

Question Paper Code : X 60768

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020
Fourth Semester
Electronics and Communication Engineering
MA 2261/MA 45/MA 1253/080380009/10177 PR 401 - PROBABILITY AND RANDOM PROCESSES
(Common to Biomedical Engineering)
(Regulations 2008/2010)

Time : Three Hours
Maximum : 100 Marks
(Use of Statistical tables is permitted)
Answer ALL questions
PART - A
(10×2=20 Marks)

1. The cumulative distribution function of the random variable X is given by $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{cl}0 ; & \mathrm{x}<0 \\ \mathrm{x}+\frac{1}{2} ; & 0 \leq \mathrm{x} \leq \frac{1}{2}, \text { compute } \mathrm{P}\left[\mathrm{X}>\frac{1}{4}\right] . \\ 1 ; & \mathrm{x}>\frac{1}{2}\end{array}\right.$
2. Find the variance of the discrete random variable X with the probability mass
function $\mathrm{P}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{ll}\frac{1}{3} & , \mathrm{x}=0 \\ \frac{1}{2} & , \mathrm{x}=2\end{array}\right.$.
3. The joint pdf of (X, Y) is given by $f(x, y)=k x e^{-\left(x^{2}+y^{2}\right)} ; x>0, y>0$. Find the value of k.
4. Define the distribution function of two dimensional random variable (X, Y). State any one property.
5. Define a strictly stationary random process.
6. Prove that sum of two independent Poisson processes is again a Poisson process.
7. A random process $X(t)$ is defined by $X(t)=K \cos \omega t, t \geq 0$ where ω is a constant and K is uniformly distributed over (0,2). Find the autocorrelation function of $\mathrm{X}(\mathrm{t})$.
8. Define cross correlation function of $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$. When do you say that they are independent?
9. Define white noise process.
10. Define linear time invariant system.
PART - B
(5×16=80 Marks)
11. a) i) A random variable X has $p d f f_{x}(x)=\left\{\begin{array}{cl}{k x^{2} e^{-x}}, & x>0 \\ 0 & \text { otherwise }\end{array}\right.$. Find the $r^{\text {th }}$ moment of X about origin. Hence find the mean and variance.
ii) A random variable X is uniformly distributed over (0, 10). Find
1) $\mathrm{P}(\mathrm{X}<3), \mathrm{P}(\mathrm{X}>7)$ and $\mathrm{P}(2<\mathrm{X}<5)$
2) $P(X=7)$.
(OR)
b) i) An office has four phone lines. Each is busy about 10\% of the time. Assume that the phone lines act independently.
3) What is the probability that all four phones are busy?
4) What is the probability that atleast two of them are busy?
ii) Describe gamma distribution. Obtain its moment generating function. Hence, compute its mean and variance.
12. a) i) State and prove central limit theorem for independently and identically distributed (iid) random variables.
ii) If X and Y are independentRVs with pdf's $e^{-x} ; x \geq 0$ and $e^{-y} ; y \geq 0$, respectively, find the pdfs of $U=\frac{X}{X+Y}$ and $V=X+Y$. Are U and V independent?
(OR)
b) The joint probability mass function of (X,Y) is given by $p(x, y)=k(2 x+3 y)$, $x=0,1,2 ; y=1,2,3$. Find all the marginal and conditional probability distributions. Also find the probability distribution of ($\mathrm{X}+\mathrm{Y}$).
13. a) i) Examine whether $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos \lambda \mathrm{t}+\mathrm{B} \sin \lambda \mathrm{t}$ where A and B are random variables such that $\mathrm{E}(\mathrm{A})=\mathrm{E}(\mathrm{B})=0 ; \mathrm{E}\left(\mathrm{A}^{2}\right)=\mathrm{E}\left(\mathrm{B}^{2}\right) ; \mathrm{E}(\mathrm{AB})=0$, is wide sense stationary.
ii) Find the auto correlation function of the Poisson process.
(OR)
b) i) Suppose $\mathrm{X}(\mathrm{t})$ is a normal process with mean $\mu(\mathrm{t})=3, \mathrm{C}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=4 \mathrm{e}^{-0.2\left|\mathrm{t}_{1}-\mathrm{t}_{2}\right|}$. Find $\mathrm{P}(\mathrm{X}(5) \leq 2)$ and $\mathrm{P}(|\mathrm{X}(8)-\mathrm{X}(5)| \leq 1)$.
ii) Define a random telegraph process. Show that it is a covariance stationary process.
14. a) i) Find the spectral density of a WSS random process $\{\mathrm{X}(\mathrm{t})\}$ whose autocorrelation function is $\mathrm{e}^{\frac{-\alpha^{2} \mathrm{t}^{2}}{2}}$.
ii) Find the autocorrelation function of the WSS process $\{\mathrm{X}(\mathrm{t})\}$ whose spectral density is given by $S(\omega)=\frac{1}{\left(1+\omega^{2}\right)^{2}}$.
(OR)
b) i) The cross-power spectrum of real random process $\{\mathrm{X}(\mathrm{t})\}$ and $\{\mathrm{Y}(\mathrm{t})\}$ is given by $S_{X Y}(\omega)=\left\{\begin{array}{cl}a+j b \omega, & |\omega|<1 \\ 0 & \text { elsewhere }\end{array}\right.$. .Find the cross-correlation function.
ii) Determine the cross correlation function corresponding to the cross-power density spectrum $\mathrm{S}_{\mathrm{XY}}(\omega)=\frac{8}{(\alpha+\mathrm{j} \omega)^{3}}$, where $\alpha>0$ is a constant.
15. a) i) Show that if the input $\{\mathrm{X}(\mathrm{t})\}$ is a WSS process for a linear system then output $\{\mathrm{Y}(\mathrm{t})\}$ is a WSS process. Also find $\mathrm{R}_{\mathrm{XY}}(\tau)$.
ii) If $\mathrm{X}(\mathrm{t})$ is the input voltage to a circuit and $\mathrm{Y}(\mathrm{t})$ is the output voltage. $\{\mathrm{X}(\mathrm{t})\}$ is a stationary random process with $\mu_{\mathrm{x}}=0$ and $\mathrm{R}_{\mathrm{xx}}(\tau)=\mathrm{e}^{-2|\tau|}$. Find the mean μ_{Y} and power spectrum $\mathrm{S}_{\mathrm{YY}}(\omega)$ of the output if the system transfer function is given by $H(\omega)=\frac{1}{\omega+2 \mathrm{i}}$.
(OR)
b) i) If $\mathrm{Y}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{0} \mathrm{t}+\theta\right)+\mathrm{N}(\mathrm{t})$, where A is a constant, θ is a random variable with a uniform distribution in $(-\pi, \pi)$ and $\{\mathrm{N}(\mathrm{t})\}$ is a band-limited Gaussian white noise with power spectral density $S_{N N}(\omega)=\left\{\begin{array}{lc}\frac{\mathrm{N}_{0}}{2}, & \text { for }\left|\omega-\omega_{0}\right|<\omega_{\mathrm{B}} \\ 0, & \text { elsewhere }\end{array}\right.$.

Find the power spectral density $\{\mathrm{Y}(\mathrm{t})\}$. Assume that $\{\mathrm{N}(\mathrm{t})\}$ and θ are independent.
ii) A system has an impulse response $h(t)=e^{-\beta t} U(t)$, find the power spectral density of the output $\mathrm{Y}(\mathrm{t})$ corresponding to the input $\mathrm{X}(\mathrm{t})$.

