|--|--|--|--|

	r							
Rog Ma	1 1	1 7		T - T				
Reg. No.:	1 1 1	1 1	ĺ	1 1	ĺ	ı	-	
	<u> </u>		Ì	1 1	ſ	ı	1 /	
						}		!

Question Paper Code: 41312

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fourth Semester

Electronics and Communication Engineering
MA 6451 – PROBABILITY AND RANDOM PROCESSES
(Common to Biomedical Engineering, Robotics and Automation Engineering)
(Regulations 2013)

Time: Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. If $f(x) = \frac{x^2}{3}$, -1 < x < 2 is the pdf of the random variable X, then find P[0 < x < 1].
- 2. Messages arrive at a switchboard in a Poisson manner at an average rate of six per hour. Find the probability for exactly two messages arrive within one hour.
- 3. If X and Y are random variables having the joint density function $f(x, y) = \frac{1}{8}(6 x y)$, 0 < x < 2, 2 < y < 4, then find P[X + Y < 3].
- 4. Find the acute angle between the two lines of regression.
- 5. Define Markov process.
- 6. State any two properties of Poisson process.
- 7. Find the mean square value of the random process $\{X(t)\}$ if its autocorrelation function $R(\tau) = 25 + \frac{4}{1+6\tau^2}$.
- 8. Write any two properties of the power spectral density of the WSS process.
- 9. Prove that the mean of the output process is the convolution of the mean of the input process and the impulse response.
- 10. Assume that the input X(t) to a linear time-invariant system is white noise. What is the power spectral density of the output process Y(t) if the system response $H(\omega) = 1$, $\omega_1 < |\omega| < \omega_2$ is given?

 = 0, otherwise

(5×16=80 Marks)

- 11. a) i) For a uniform random variable X in the interval (a, b), derive the moment generating function and hence obtain its mean and variance. (10)
 - ii) Let X be the random variable that denotes the outcome of the roll of a fair (6)die. Compute the mean and variance of X.

(OR)

- b) i) Find the moment generating function of Gamma distribution with parameters (10) \boldsymbol{K} and $\boldsymbol{\lambda}$ and hence compute the first four moments.
 - ii) A continuous random variable X has the density function f(x) given by $f(x) = \frac{\kappa}{x^2 + 1}$, $-\infty < x < \infty$. Find the value of k and the cumulative distribution **(6)**⁽ of X.
- 12. a) Given $f(x, y) = \frac{1}{8}(x + y)$, $0 \le x \le 2$, $0 \le y \le 2$ is the joint pdf of X and Y. Obtain the correlation coefficient between X and Y.

(OR)

- b) i) Let (X, Y) be a two dimensional non-negative continuous random variable having the joint probability density function $f(x, y) = 4xy e^{-(x^2 + y^2)}, x \ge 0$, $y \ge 0$. Find the probability density function of $\sqrt{X^2 + Y^2}$. (10)
 - ii) Find P[X < Y/X < 2Y] if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $0 \le x < \infty$, $0 \le y \le \infty$.
- 13. a) i) Prove that Poisson process is a Markov process.
 - ii) A random process $\{X(t)\}\$ is defined by $X(t) = A \cos t + B \sin tt$, $-\infty < t < \infty$, where A and B are independent random variables each of which has a value -2 with probability $\frac{1}{3}$ and a value 1 with probability $\frac{2}{3}$. Show that $\{X(t)\}$ is not stationary in strict sense.

- b) i) If $\{X_1(t)\}$ and $\{X_2(t)\}$ represent two independent Poisson processes with parameters $\lambda_1 t$ and $\lambda_2 t$ respectively, then prove that $P[X_1(t) = x/\{X_1(t) + X_2(t) = n\}]$ is binomial with parameters n and p, where $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - ii) Consider a random process $\{X(t)\}\$ such that $X(t) = A\cos(\omega t + \theta)$, where A and ω are constants, and θ is a uniform random variable distributed with interval $(-\pi, \pi)$. Check whether the process $\{X(t)\}$ is a stationary process in wide sense.

14. a) i) Consider two random processes $X(t) = 3\cos(\omega t + \theta)$ and $Y(t) = 2\cos(\omega t + \theta - \frac{\pi}{2})$,

where θ is a random variable uniformly distributed in (0, 2π). Prove that

$$\sqrt{R_{XX}(o) R_{YY}(o)} \ge |R_{XY}(\tau)|. \tag{10}$$

41312

ii) Determine the autocorrelation function of the random process with the power spectral density given by $S_{XX}(\omega) = S_0$, $|\omega| < \omega_0$.

(OR)

- b) i) Given that a process {X(t)} has the autocorrelation function $R_{XX}(\tau) = Ae^{-\alpha - |\tau|} \cos(\omega_0 \tau)$ where A > 0, $\alpha > 0$ and ω_0 are real constants, find the power spectrum of X(t).
 - ii) The cross-power spectrum of real random processes X(t) and Y(t) is given by $S_{XY}(\omega) = a + jb\omega$, $|\omega| < 1$. Find the cross-correlation function.
- 15. a) i) Show that $S_{YY}(\omega) = |H(\omega)|^2 S_{XX}(\omega)$, where $S_{XX}(\omega)$ and $S_{YY}(\omega)$ are the power spectral density functions of the input X(t) and the output Y(t) and $H(\omega)$ is (8) the system transfer function.
 - ii) Obtain the power spectral density function of the output process {Y(t)} corresponding to the input process {X(t)} is the system that has an impulse response $h(t) = e^{-\beta t} U(t)$.

b) A random process X(t) is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$, $t \ge 0$. If the autocorrelation function of the process is $R_{XX}(\tau) = e^{-2|\tau|}$, determine the following:

The cross correlation function between the input process X(t) and the output process Y(t).