

(8)

14.	a)	i) Using Lagrange's interpolation formula, find the polynomial f(x) form the	
		following data: The many the rest of the rest of the same of the s	(

x:1.7 sin(x):0.9916 0.9857 0.9781 0.9691 0.9584 (OR)

x : 1 2 4 8 f(x) : 1 5 5 4

ii) Evaluate
$$\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{1+x_1} dxdy$$
 by Trapezoidal rule with $h = k = 0.1$. (8)

15. a) i) Using Taylor series method, find the value of y at x = 0.1, if y satisfies the

equation $\frac{dy}{dx} = x^2 - y$ given that y = 1 when x = 0, correct to 3 decimal places. (8)

ii) Solve the equation
$$\frac{d^2y}{dx^2} = x + y$$
 with boundary conditions $y(0) = 1 = y(1)$ by finite difference method, by taking 4 subintervals.

b) i) Using R-K method of fourth order, find the value of y at x = 0.1, if y satisfies the equation $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0, correct to 3 decimal places. (8)

ii) Given
$$\frac{dy}{dx} = x^3 + y$$
, $y(0) = 2$, $y(0.2) = 2.073$, $y(0.4) = 2.452$, $y(0.6) = 3.023$, compute y (0.8) by Milne's method. (8)

E INGLES OF	H BEH	SISSE	11181	1011 (08)

Reg. No.:	<i>t</i> :					11/4	

Question Paper Code: 50782

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fourth/Fifth Semester Mechanical Engineering MA 6452 – STATISTICS AND NUMERICAL METHODS (Regulations 2013)

(Common to Mechanical Engineering (Sandwich), Automobile Engineering,

Time: Three Hours Maximum: 100 Marks

-Answer ALL questions. ampuls with sent with

Englishming right and the firm on the firm with the species and for the health of a new firm of the continued the second transfer and the continued to the cont

PART - A

(10×2=20 Marks

- 1. What is meant by level of significance and critical region?
- 2. State any two applications of Chi-square test.
- 3. What is the aim of the design of experiment?
- 4. What is a completely randomized design?
- 5. What are the merits of Newton-Raphson method?
- 6. Distinguish between Gauss elimination and Gauss-seidel methods.
- 7. What is meant by interpolation?
- 8. What is the order of error in Trapezoidal and Simpson's one-third rules?
- 9. What is main difference between single and multistep methods in solving first order ordinary differential equation?
- 10. State the modified Euler's formula for first order ordinary differential equation.

PART - B

 $(5\times16=80 \text{ Marks})$

- 11. a) i) A random sample of 100 bulbs from a company P shows a mean life 1300 hours and standard deviation of 82 hours. Another random sample of 100 bulbs from company Q showed a mean life 1248 hours and standard deviation of 93 hours. Are the bulbs of company P superior to bulbs of company Q at 5% level of significance?
 - ii) A random sample of 10 boys has the following IQ's 70, 83, 88, 95, 98, 100, 101, 107, 110 and 120. Do these data support the assumption of a population mean IQ of 100 at 5% level of significance?

Configura (OR) affilia Company Saferian and 1924 for december 2. In accompany

b) i) Time taken by workers in performing a job is given below:

Method 1	20	16	26	27	23	22	
Method 2	27	33	42	35	34	38	errana (f. 1964). Tali
Test whether	there:	is any	signific	cant di	fferenc	e betwee	en the variances of

the time distribution at 5% level of significance.

ii) Using the data given in the following table to test at 1% level of significance

ii) Using the data given in the following table to test at 1% level of significance whether a person's ability in Mathematics is independent of his/her interest in Statistics.

	ekana (Borton yaktora)	Ability in Mathematics						
	ing in the second secon	Low	Average	High				
	Low	63 °C	42	15				
Interest in Statistics	Average	58	61	31				
	High	× 1455	47	: 29				

12. a) The following data represent a certain person to work from Monday to Friday by four different routes.

100 m 100 m	ret ega e	Control for the Nare Naregove, Days (1995) 199								
and the state of t	. En prés	Mon	Tue	Wed	Thu	Fri				
	1	22	26	25	25	- 31				
Doutes	2	25	27	28	26	29				
Routes	3	26	29	33	30	33				
	4	26	28	27	30	30				

Test at 5% level of significance whether the differences among the means obtained for the different routes are significant and also whether the differences among the means obtained for the different days of the week are significant. (16)

OR)

b) Four air-conditioning compressor designs were tested in four different regions of India. The test was repeated by installing additional air conditioners in a second cooling season. The following are the times to failure (to the nearest month) of each compressor tested.

• :	a the Might		Replicate 1			Replicate 2			and appeals to the	
	¥.5	A	В	С	D	A	$\mathbf{B}^{:}$	C	D	i ya
	Northeast	58	35	72	61	49	24	60	64	7g Cr
Dogista	Southeast	40	18	54	38	38	22	64	50	ongolayik tyi (
Design	Northwest	63	44	81	52	59	16	60	48	The state of the s
	Southwest	36	09	47	30	29	13	52	41	· · · · · · · · · · · · · · · · · · ·
· · · · ·				Variable of		Estata I	Very 1	diff at i	Part (v	tan (f. anigs f. A. 195)

(16)

Test at the 0.05 level of significance whether the differences among the means determined for designs, for regions, and for replicates are significant and for significance of the interaction between compressor designs and regions. (16)

13. a) i) Find, by Newton-Raphson method, a positive root of the equation $3x - \cos x - 1 = 0$, correct to 4 decimal places. (8)

ii) Using Gauss-Jordan method, find the inverse of
$$A = \begin{pmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$
. (8)

b) i) Solve, by Gauss-Seidel method, the system of following equations, correct to three decimal places.

$$27x + 6y - z = 85$$
, $x + y + 54z = 110$, $6x + 15y + 2z = 72$. (8)

ii) Find the numerically largest Eigenvalue and the corresponding

eigenvector of a matrix
$$A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
. (8)