Reg. No. \square

Question Paper Code : 57506

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester
Mechanical Engineering

MA 6452 - STATISTICS AND NUMERICAL METHODS

(Common to Fourth Semester Automobile Engineering and Mechatronics Engineering)
[Also common to Fifth Semester for Mechanical Engineering (Sandwich)]
Time : Three Hours
Maximum : $\mathbf{1 0 0}$ Marks

Use of statistical tables is permitted.
Answer ALL questions.
PART - A ($10 \times 2=20$ Marks $)$

1. What are Type - I and Type - II errors ?
2. Give the formula for the χ^{2} - test of independence for

a	b
c	d

3. State the principles of Design of Experiments.
4. Is 2×2 Latin square Design possible ? Why ?
5. Mention the order and condition for the convergence of Newton-Raphson method.
6. What is the procedure of Gauss-Jordan method ?
7. Specify the Newton's backward difference formulae for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
8. Write down the errors in Trapezoidal and Simpson's rules of numerical integration.
9. Find $y(0.1)$ by Euler's method, if $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=0.1$
10. Give the central difference approximations for $y^{\prime}(x), y^{\prime \prime}(x)$.

$$
\text { PART }- \text { B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) A mathematics test was given to 50 girls and 75 boys. The girls made an average grade of 76 with an SD of 6 and the boys made an average grade of 82 with an SD of 2 . Test whether there is any difference between the performance of boys and girls.
(ii) Theory predicts the proportion of beans in the groups $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ as $9: 3: 3: 1$. In an experiment among beans the numbers in the groups were 882,313 , 287 and 118 . Does the experiment support the theory?

OR

(b) (i) 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favour of the proposal. Test whether these two proportions are same.
(ii) The IQ's of 10 girls are respectively $120,110,70,88,101,100,83,98,95$, 107. Test whether the population mean IQ is 100 .
12. (a) Three varieties of coal were analysed by 4 chemists and the ash content is tabulated here. Perform an analysis of variance.

		Chemists			
		A	B	C	D
	I	8	5	5	7
Coal	II	7	6	4	4
	III	3	6	5	4

OR

(b) The result of an RBD experiment on 3 blocks with 4 treatments A, B, C, D are tabulated here. Carry out an analysis of variance.

Blocks	Treatment effects			
I	A36	D35	C21	B36
II	D32	B29	A28	C31
III	B28	C29	D29	A26

13. (a) (i) Solve the following equations by Gauss elimination method:
$2 x+y+4 z=12$,
$8 x-3 y+2 z=20$,
$4 x+11 y-z=33$,
(ii) Using power method find the dominant eigen value of the matrix
$\left(\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right)$

OR

(b) (i) If $\mathrm{A}=\left(\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right)$, find A^{-1} by Gauss-Jordan method.
(ii) Solve the following equations by Gauss-Seidel method $x+y+9 z=15$, $x+17 y-2 z=48$, $30 x-2 y+3 z=75$
14. (a) (i) Interpolate $y(12)$, if

$x:$	10	15	20	25	30	35
$y(x):$	35	33	29	27	22	14

(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simpson's (1/3) rule, dividing the range into four equal parts.

OR
(b) (i) Find $y^{\prime}(1)$, if

$$
\begin{array}{ccccc}
x: & -1 & 0 & 2 & 3 \\
y(x): & -8 & 3 & 1 & 12
\end{array}
$$

(ii) Using Trapezoidal rule, evaluate $\int_{1}^{2} \int_{1}^{2} \frac{\mathrm{~d} x \cdot \mathrm{dy}}{x+y}$ with $\mathrm{h}=\mathrm{K}=0.5$.
15. (a) If $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$, find $y(0.1), y(0.2)$ and $y(0.3)$ by Taylor series method. Hence find $\mathrm{y}(0.4)$ by Milne's Predictor-Corrector method.

OR

(b) If $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$, find $y(0.2), y(0.4), y(0.6)$ by Runge-Kutta method. Hence find $y(0.8)$ by Milne's method.

