Reg. No. :

Question Paper Code : 21778

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Mechanical Engineering

MA 2266/MA 42/MA 1254/080120014/10177 SN 401 — STATISTICS AND NUMERICAL METHODS

(Common to Automobile Engineering and Production Engineering)

(Regulations 2008/2010)

(Common to PTMA 2266 – Statistics and Numerical Methods for B.E. (Part-Time) Second Semester – Production Engineering – Regulations 2009)

Time : Three hours

Maximum : 100 marks

Statistical tables may be permitted.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write any two applications of ψ^2 -test.
- 2. What are Type-I and Type-II errors?
- 3. Present the ANOVA table for a completely randomized design.

4. Explain 2^2 factorial design.

- 5. Compare Gauss-Jordan method with Gauss-Seidel method.
- 6. Write the formula and order of convergence for Newton-Raphson method.
- 7. Construct the Newton's forward difference table for $y = x^2 3x + 1$, x = 0 to 4.

8. Write the difference between Trapezoidal and Simpson's $\frac{1}{2}^{rd}$ rule.

9. Using Euler's method find y(0.1) for y' = x + y, y(0) = 1.

10. Classify the equation : $f_{xx} - 2f_{xy} + f_{yy} = 0$.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a)

12.

 (a) (i) Do the following sample variances vary significantly at 5% level? (8) Sample I: 39 41 43 41 45 39
 Sample II: 40 42 40 44 39 38 40

(ii) Test whether the following attributes are independent at 5% level. (8) Vaccination

Small pox		Given	Not given	Total
	Attacked	35	333	368
	Not attacked	308	806	1114
	Total	343	1139	1482
A design of the second				

Or

(b) (i) Test if the difference in means is significant for the following at 5% level. (8)

$$\overline{x}_1 = 1190, \ \overline{x}_2 = 1230, \ S_1 = 90, \ S_2 = 120, \ n_1 = 100, \ n_2 = 75.$$

(ii) Is there any significant difference in means, in the following at 5% level?
(8)

$$\overline{x}_1 = 107$$
, $\overline{x}_2 = 112$, $S_1 = 10$, $S_2 = 8$, $n_1 = 16$, $n_2 = 14$.

- (a) A farmer wishes to test the effects of 4 different fertilizers (A, B, C, D) on the yield of wheat. In order to eliminate sources of error due to variability in soil fertility, he uses the fertilizers in a latin square arrangement as shown in the following table, where the number indicated yields in busheds/unit area. Perform an analysis of variance to determine whether there is a difference between the fertilizers at significant levels of
 - (i) .05
 - (ii) .01.

0.							
C22	D21	B10	A17				
B15	A20	C23	D24				
D22	B12	A15	C19				
A18	C21	D25	B11				

- (b) Five doctors each test five treatments for a certain disease and observe the number of days each patient takes to recover. Discuss the difference between
 - (i) The doctors and
 - (ii) The treatments for the following data at 5% level.

(16)

(16)

	Treatments					
Doctors	1	2	3	4	5	
1	10	14	23	18	20	
2	11	15	24	17	21	
3	9	12	20	16	19	
4	8	13	.17	17	20	
5	12	15	19	15	22	

21778

13. (a) (i) Find the inverse of the matrix, by Gauss elimination.

$$A = \begin{pmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

(ii) Using Gauss-Seidel method, solve : (8) 20x + y - 2z = 17 3x + 20y - z = -182x - 3y + 20z = 25.

(b) Find the eigen value of $A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$ using power method. (16)

14. (a) (i) Using Newton's divided difference formula find the value of f(8) for the following : x: 4 5 7 10 11 13 (8)

f(x): 48 100 294 900 1210 2028

(ii) Evaluate $\int_{0}^{0} e^{x} dx$ using Simpson's $\frac{1}{3}$ rule correct to five decimal places, taking h = .1. Verify your answer. (8)

Or

(b) (i) Find $\left(\frac{dy}{dx}\right)_{1.1}$ and $\left(\frac{d^2y}{dx^2}\right)_{1.1}$ for the following : (8) $x : 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 \quad 1.5 \quad 1.6$ $y : 7.989 \ 8.403 \ 8.781 \quad 9.129 \quad 9.451 \quad 9.750 \quad 10.031$

(ii) Using Lagrange's method find y(10) from the following : (8)

15. (a) Use Runge-Kutta method of order 4 to find y at x = .1, .2, .3 given that $y' = x + y^2, y(0) = 1.$ (16)

Or

(b) Given : $y' = x^2 + y^2 - 2$, y(0) = 1, use Taylor's method to find y at x = -0.1, 0.1, 0.2 and Milne's method to find y at x = 0.3. (16)

(8)