\square

Question Paper Code : 21778

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.
 Fourth Semester
 Mechanical Engineering
 MA 2266/MA 42/MA 1254/080120014/10177 SN 401 - STATISTICS AND NUMERICAL METHODS

(Common to Automobile Engineering and Production Engineering)
(Regulations 2008/2010)
(Common to PTMA 2266 - Statistics and Numerical Methods for B.E. (Part-Time)
Second Semester - Production Engineering - Regulations 2009)
Time : Three hours
Maximum : 100 marks
Statistical tables may be permitted.
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Write any two applications of ψ^{2}-test.
2. What are Type-I and Type-II errors?
3. Present the ANOVA table for a completely randomized design.
4. Explain 2^{2} factorial design.
5. Compare Gauss-Jordan method with Gauss-Seidel method.
6. Write the formula and order of convergence for Newton-Raphson method.
7. Construct the Newton's forward difference table for $y=x^{2}-3 x+1, x=0$ to 4 .
8. Write the difference between Trapezoidal and Simpson's $\frac{{ }_{3}^{\text {rd }}}{}$ rule.
9. Using Euler's method find $y(0.1)$ for $y^{\prime}=x+y, y(0)=1$.
10. Classify the equation: $f_{x x}-2 f_{x y}+f_{y y}=0$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Do the following sample variances vary significantly at 5% level? (8) Sample I: $\quad 39 \quad 41 \quad 43$
Sample II : $40 \begin{array}{lllllll}40 & 42 & 40 & 44 & 39 & 38 & 40\end{array}$
(ii) Test whether the following attributes are independent at 5% level.

(b) (i) Test if the difference in means is significant for the following at 5% level.

$$
\begin{equation*}
\bar{x}_{1}=1190, \bar{x}_{2}=1230, S_{1}=90, S_{2}=120, n_{1}=100, n_{2}=75 \tag{8}
\end{equation*}
$$

(ii) Is there any significant difference in means, in the following at 5% level?

$$
\begin{equation*}
\bar{x}_{1}=107, \bar{x}_{2}=112, S_{1}=10, S_{2}=8, n_{1}=16, n_{2}=14 \tag{8}
\end{equation*}
$$

12. (a) A farmer wishes to test the effects of 4 different fertilizers ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) on the yield of wheat. In order to eliminate sources of error due to variability in soil fertility, he uses the fertilizers in a latin square arrangement as shown in the following table, where the number indicated yields in busheds/unit area. Perform an analysis of variance to determine whether there is a difference between the fertilizers at significant levels of
(i) .05
(ii) .01 .

A18	C21	D25	B11
D22	B12	A15	C19
B15	A20	C23	D24
C22	D21	B10	A17

Or
(b) Five doctors each test five treatments for a certain disease and observe the number of days each patient takes to recover. Discuss the difference between
(i) The doctors and
(ii) The treatments for the following data at 5% level.

Treatments

Doctors	1	2	3	4	5
1	10	14	23	18	20
2	11	15	24	17	21
3	9	12	20	16	19
4	8	13	17	17	20
5	12	15	19	15	22

13. (a) (i) Find the inverse of the matrix, by Gauss elimination.

$$
A=\left(\begin{array}{ccc}
4 & 1 & 2 \tag{8}\\
2 & 3 & -1 \\
1 & -2 & 2
\end{array}\right)
$$

(ii) Using Gauss-Seidel method, solve :

$$
\begin{align*}
& 20 x+y-2 z=17 \tag{8}\\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{align*}
$$

Or

(b) Find the eigen value of $A=\left(\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right)$ using power method.
14. (a) (i) Using Newton's divided difference formula find the value of $f(8)$ for the following :

$$
\begin{array}{lcccccc}
x: & 4 & 5 & 7 & 10 & 11 & 13 \tag{8}\\
f(x): & 48 & 100 & 294 & 900 & 1210 & 2028
\end{array}
$$

(ii) Evaluate $\int_{0}^{1} e^{x} d x$ using Simpson's $1 / 3$ rule correct to five decimal places, taking $h=.1$. Verify your answer.

> Or
(b) (i) Find $\left(\frac{d y}{d x}\right)_{1.1}$ and $\left(\frac{d^{2} y}{d x^{2}}\right)_{1.1}$ for the following:

$$
\begin{array}{lccccccc}
x: & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 \\
y: & 7.989 & 8.403 & 8.781 & 9.129 & 9.451 & 9.750 & 10.031
\end{array}
$$

(ii) Using Lagrange's method find $y(10)$ from the following :

$$
\begin{array}{lcccc}
x: & 5 & 6 & 9 & 11 \tag{8}\\
y: & 12 & 13 & 14 & 16
\end{array}
$$

15. (a) Use Runge-Kutta method of order 4 to find y at $x=.1, .2, .3$ given that $y^{\prime}=x+y^{2}, y(0)=1$.

Or

(b) Given : $y^{\prime}=x^{2}+y^{2}-2, y(0)=1$, use Taylor's method to find y at $x=-0.1,0.1,0.2$ and Milne's method to find y at $x=0.3$.

