Reg. No.

Question Paper Code : 51778

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Mechanical Engineering

MA 2266/MA 42/MA 1254/080120014/10177 SN 401 – STATISTICS AND NUMERICAL METHODS

(Common to Automobile Engineering and Production Engineering)

(Regulations 2008/2010)

mples of 200 bolts manufactured by machine A and 100 bolts and Time : Three Hours

Maximum : 100 Marks

Statistical tables may be permitted. Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

What are Type I and Type II risk?

2. Present the test statistics for small samples concerning difference between two means.

3. What is a 2^2 factorial design ?

4. Compare one-way classification with two-way classification.

5. Write the iterative formula and the order of convergence of Newton-Raphson method.

6. Compare Gauss-Elimination with Gauss-Seidel method.

7. Create the table for the following data using Newton's divided difference formula :

x : 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028

20-06

1.

- 8. Compare trapezoidal rule with Simpson's $\frac{1}{3}$ rule.
- 9. Given the two methods : Taylor's series and R.K. method which is better ? Why ?
- 10. Express $(\Delta^2 3\Delta + 2)$ interms of the operator E.

PART - B (5 × 16 = 80 Marks)

Fourth Semester

- 11. (a) (i) Test if the means are significantly different for the following data : X_1 : 5 6 8 1 12 4 3 9 6 10 X_2 : 2 3 6 8 10 1 2 8
 - (ii) Random samples of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed 19 and 5 defective bolts respectively. Test the hypothesis at 5% level of significance that the two machines are showing different qualities of performance.

OR

(b) (i) Do the sample variances vary significantly for the following data :

Sample I :	39	41	43	41	45	39	
Sample II :	40	42	40	44	39	38	40

(ii) The following data represents the no. of books borrowed from a library during the various days of the week.

Days of the week :	Mon	Tue	Wed	Thu	Fri	Sat	Sun
No. of books :	14	16	8	12	11	9	14

Find if the books borrowed one uniformly distributed over the week.

(8)

(8)

(8)

12. (

(a) Carryout an ANOVA for the following :

				,	1804	to 2, correct to 5 decimai praces.						
Observer	1	2	3	4	5	6						
borito 1	9	10	9	10	11	(ii) Find the inverse of A						
2	12	11	9	11	10	10						
(0)}31adt h	11	10	10	12	111	(i) at theing Lagrange's fuelle 01						
4	12	13	11	14	12	f(1) = 3, f(2) = 12 & f(3) = 112 & f(3) & f(3) = 112 & f(3) = 112 & f(3) & f(3) & f(3) = 112 & f(3) & f(3) & f(3) = 112 & f(3) & f(

(ii) Find $\frac{dy}{dx}$ for x = 1.05 from the foll \mathbf{RO} is data

Consignment

(b) Perform Analysis of variance for the 2² experiment and draw your conclusions for the following data: (16)

Block	Yields (Potato)								
T	(1)	a	b	ab					
1	23	25	22	38					
C BIG	b	(1)	a	ab					
а н 1161	40	26	36	38					
20	(1)	a	ba	b					
0	29	20	30	20					
IV	ab	a	b	(1)					
I V	34	31	24	28					

13. (a) (i) Solve by Gauss-Seidel, the equations

(8)

(16)

20x + y - 2z = 173x + 20y - z = -18 (100 (2.0)) but, above to bottom 21.8 gained as (i)

$$x + 20y - 2 = -18$$

2x - 3y + 20z = 25

Standing with $(0, 0, 0)^{T}$

(ii) Using power method, find the longest Eigen value and its corresponding
Eigen vector from (8)

3

Find y when x = 410 for the followi

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

(b) (i) Using Newton-Raphson's method, find the root of $x^4 - x - 10 = 0$, nearing to 2, correct to 3 decimal places. (8)

(ii) Find the inverse of A = $\begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{pmatrix}$ using Gauss-Jordan method. (8)

- 14. (a) (i) Using Lagrange's method, find the polynomial f(x) given that f(0) = 2, f(1) = 3, f(2) = 12 & f(3) = 35. Hence find f(5). (8)
 - (ii) Find $\frac{dy}{dx}$ for x = 1.05 from the following data :

(

1.15 = 1.2 = 1.25 = 1.3

y: 1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017

OR

							20	38					
b)	(i)	Using	g Simps	son's $\frac{1}{3}$	rule	, evalu	ate	V dt for the following data :					(8)
							0						
		t :	2	4	6	8	10	12	14	16	18	20	
		V :	10	18	25	29	32	20	11	5	2	0	
	(ii)	Find	y when	x = 4	10 fo	r the fo	llow	ing :					(8)
		<i>x</i> :	100	15	50	200	OR	250	300		350	400	
		y:	10.63	13.	.03	15.04	1	6.81	18.42	- the	19.9	21.27	

15. (a) (i) Using R.K. method 4th order, find y(0.2) with h = 0.1 for $\frac{dy}{dx} = \sqrt{x + y}$, y(0) = 1. (8)

- (ii) Apply Euler's modified method to solve $\frac{dy}{dx} = x + 3y$, y(0) = 1, to find y when x = 1. (8)
- (b) Given $\frac{dy}{dx} = \frac{1}{2}(1 + x^2)y^2$ and y(0) = 1. Find the values of y for x = 0.1, 0.2 and 0.3 using Taylor's series and hence find y(0.4) by Milne's Predictor-Corrector method. (16)