Reg. No.

\square

Question Paper Code : 51778

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester
Mechanical Engineering
MA 2266/MA 42/MA 1254/080120014/10177 SN 401 - STATISTICS AND NUMERICAL
METHODS (Common to Automobile Engineering and Production Engineering)
(Regulations 2008/2010)

Time : Three Hours
Maximum : 100 Marks

Statistical tables may be permitted.

Answer ALL questions. PART - A ($10 \times 2=20$ Marks $)$

1. What are Type I and Type II risk ?
2. Present the test statistics for small samples concerning difference between two means.
3. What is a 2^{2} factorial design ?
4. Compare one-way classification with two-way classification.
5. Write the iterative formula and the order of convergence of Newton-Raphson method.
6. Compare Gauss-Elimination with Gauss-Seidel method.
7. Create the table for the following data using Newton's divided difference formula :

$x:$	4	5	7	10	11	13
$\mathrm{f}(x):$	48	100	294	900	1210	2028

8. Compare trapezoidal rule with Simpson's $\frac{1}{3}$ rule.
9. Given the two methods : Taylor's series and R.K. method - which is better? Why?
10. Express $\left(\Delta^{2}-3 \Delta+2\right)$ interms of the operator E.

$$
\text { PART }-B(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Test if the means are significantly different for the following data :

$$
\begin{array}{lllllllllll}
\mathbf{X}_{1}: & 5 & 6 & 8 & 1 & 12 & 4 & 3 & 9 & 6 & 10 \\
\mathbf{X}_{2}: & 2 & 3 & 6 & 8 & 10 & 1 & 2 & 8 & &
\end{array}
$$

(ii) Random samples of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed 19 and 5 defective bolts respectively. Test the hypothesis at 5% level of significance that the two machines are showing different qualities of performance.

OR

(b) (i) Do the sample variances vary significantly for the following data:

Sample I :	39	41	43	41	45	39	
Sample II :	40	42	40	44	39	38	40

(ii) The following data represents the no. of books borrowed from a library during the various days of the week.

Days of the week :	Mon	Tue	Wed	Thu	Fri	Sat	Sun
No. of books :	14	16	8	12	11	9	14

Find if the books borrowed one uniformly distributed over the week.
12. (a) Carryout an ANOVA for the following:

Consignment

Observer	1	2	3	4	5	6
1	9	10	9	10	11	11
2	12	11	9	11	10	10
3	11	10	10	12	11	10
4	12	13	11	14	12	10
			OR			

(b) Perform Analysis of variance for the 2^{2} experiment and draw your conclusions for the following data :

Block Yields (Potato)

I
(1) $\mathrm{a} \quad \mathrm{b} \quad \mathrm{ab}$
$\begin{array}{llll}23 & 25 & 22 & 38\end{array}$
b (1) a ab
II
$\begin{array}{llll}40 & 26 & 36 & 38\end{array}$

III
(1) a ba b
$\begin{array}{llll}29 & 20 & 30 & 20\end{array}$
$a b \quad a \quad b \quad$ (1)
IV
$\begin{array}{llll}34 & 31 & 24 & 28\end{array}$
13. (a) (i) Solve by Gauss-Seidel, the equations
$20 x+y-2 z=17$
$3 x+20 y-z=-18$
$2 x-3 y+20 z=25$
Standing with $(0,0,0)^{\mathrm{T}}$
(ii) Using power method, find the longest Eigen value and its corresponding Eigen vector from
$A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$
(b) (i) Using Newton-Raphson's method, find the root of $x^{4}-x-10=0$, nearing to 2 , correct to 3 decimal places.
(ii) Find the inverse of $\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right)$ using Gauss-Jordan method.
14. (a) (i) Using Lagrange's method, find the polynomial $f(x)$ given that $f(0)=2$, $f(1)=3, f(2)=12 \& f(3)=35$. Hence find $f(5)$.
(ii) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ for $x=1.05$ from the following data:
$\begin{array}{llllllll}x: & 1.00 & 1.05 & 1.1 & 1.15 & 1.2 & 1.25 & 1.3\end{array}$
$y: \quad 1 \quad 1 \quad 1.0247 \quad 1.04881 \quad 1.07238 \quad 1.095441 .118031 .14017$
OR
(b) (i) Using Simpson's $\frac{1}{3}$ rule, evaluate $\int_{0}^{20} V$ dt for the following data :

$\mathrm{t}:$	2	4	6	8	10	12	14	16	18	20
$\mathrm{~V}:$	10	18	25	29	32	20	11	5	2	0

(ii) Find y when $x=410$ for the following:

$x:$	100	150	200	250	300	350	400
$y:$	10.63	13.03	15.04	16.81	18.42	19.9	21.27

15. (a) (i) Using R.K. method $4^{\text {th }}$ order, find $y(0.2)$ with $h=0.1$ for $\frac{d y}{d x}=\sqrt{x+y}, y(0)=1$.
(ii) Apply Euler's modified method to solve $\frac{\mathrm{dy}}{\mathrm{d} x}=x+3 y, y(0)=1$, to find y when $x=1$.

OR

(b) Given $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1$. Find the values of y for $x=0.1,0.2$ and 0.3 using Taylor's series and hence find $\mathrm{y}(0.4)$ by Milne's Predictor-Corrector method.

