Reg. No. \square

Question Paper Code : 80608

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016
 Third Semester
 Civil Engineering

MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all branches except Environmental Engineering, Textile Chemistry,
Textile Technology, Fashion Technology and Pharmaceutical Technology)
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Find the PDE of all spheres whose centers lie on the x-axis.
2. Find the complete integral of $\frac{z}{p q}=\frac{x}{q}+\frac{y}{p}+\sqrt{p q}$.
3. State the Dirichlet's conditions for a function $f(x)$ to be expanded as a Fourier series.
4. Expand $f(x)=1$, in $(0, \pi)$ as a half-range sine series.
5. State the assumptions in deriving one-dimensional wave equation.
6. State the three possible solutions of the one-dimensional heat flow (unsteady state) equation.
7. State change of scale property on Fourier transforms.
8. Find the infinite Fourier sine transform of $f(x)=\frac{1}{x}$
9. State convolution theorem on Z-transform.
10. Find $Z\left[\frac{1}{n(n+1)}\right]$.

PART B - $(5 \times 16=80$ marks $)$
11. (a) (i) Find the partial differential equations of all planes which are at a constant distance ' k ' units from the origin.
(ii) Solve the Lagrange's equation $x\left(z^{2}-y^{2}\right) p+y\left(x^{2}-z^{2}\right) q=z\left(y^{2}-x^{2}\right)$

Or
(b) (i) Form the PDE by eliminating the arbitrary functions ' f ' and ' φ ' from the relation $z=x f\left(\frac{y}{x}\right)+y \varphi(x)$.
(ii) Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x$.
12. (a) (i) Expand $f(x)=x^{2}$ as a Fourier series in the interval $(-\pi, \pi)$ and hence deduce that $1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\ldots=\frac{\pi^{4}}{90}$.
(ii) Obtain the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of y as given in the following table:

$$
\begin{array}{ccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 \tag{8}\\
y & 9 & 18 & 24 & 28 & 26 & 20
\end{array}
$$

(b) (i) Expand $f(x)=e^{-\alpha x},-\pi<x<\pi$ as a complex form Fourier series. (8)
(ii) Expand $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 2-x, & 1<x<2\end{array}\right.$ as a series of cosines in the interval $(0,2)$.
13. (a) A tightly stretched string of length τ ' with fixed end points is initially at rest in its equilibrium position. If it is set vibrating by giving each point a velocity $y_{t}(x, 0)=v_{0} \sin \left(\frac{3 \pi x}{l}\right) \cos \left(\frac{\pi x}{l}\right), \quad$ where $0<x<l$. Find the displacement of the string at a point, at a distance x from one end at any instant ' t '.

Or
(b) A square plate is bounded by the lines $x=0, x=20, y=0, y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x), 0<x<20$, while the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature distribution $u(x, y)$ in the plate.
14. (a) (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1-|x|, & |x|<1 \\ 0, & |x|>1\end{array}\right.$ and hence deduce that $\int_{0}^{\infty}\left[\frac{\sin t}{t}\right]^{4} d t=\frac{\pi}{3}$.
(ii) Find the infinite Fourier sine transform of $f(x)=\frac{e^{-\alpha x}}{x}$ hence deduce the infinite Fourier sine transform of $\frac{1}{x}$.

Or
(b) (i) Find the infinite Fourier transform of $e^{-a^{2} x^{2}}$ hence deduce the infinite Fourier transform of $e^{-x^{2} / 2}$.
(ii) Solve the integral equation $\int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda}$, where $\lambda>0$.
15. (a) (i) Find
(1) $Z\left[n^{3}\right]$
(2) $Z\left[e^{-t} t^{2}\right]$.
(ii) Evaluate $Z^{-1}\left[\frac{9 z^{3}}{(3 z-1)^{2}(z-2)}\right]$, using calculus of residues.
(b) (i) Using convolution theorem, evaluate $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$.
(ii) Using Z-transform, solve $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ given that $y_{0}=y_{1}=0$.

