Reg. No. \square

Question Paper Code : 57502

B.E./B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016
Third Semester
Civil Engineering
MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches except Environmental Engineering, Textile Chemistry, Textile Technology, Fashion Technology and Pharmaceutical Technology)
(Regulations 2013)

Time: Three Hours
Maximum : 100 Marks

> Answer ALL questions.
> PART - A $(10 \times 2=20 \mathrm{Marks})$

1. Form the partial differential equation by eliminating the arbitrary functions from

$$
f\left(x^{2}+y^{2}, z-x y\right)=0
$$

2. Find the complete solution of the partial differential equation $\mathrm{p}^{3}-\mathrm{q}^{3}=0$.
3. Find the value of the Fourier series of $f(x)=\left\{\begin{array}{l}0 \text { in }(-c, 0) \\ 1 \\ \text { in }(0, c)\end{array}\right.$ at the point of discontinuity $x=0$.
4. Find the value of b_{n} in the Fourier series expansion of $\mathrm{f}(x)=\left\{\begin{array}{c}x+\pi \text { in }(-\pi, 0) \\ -x+\pi \text { in }(0, \pi)\end{array}\right.$
5. Classify the partial differential equation $u_{x x}+u_{x y}=f(x, y)$.
6. Write down all the possible solutions of one dimensional heat equation.
7. State Fourier integral theorem.
8. Find the Fourier transform of a derivative of the function $\mathrm{f}(x)$ if $\mathrm{f}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
9. Find $Z\left\{\frac{1}{n!}\right\}$
10. Find $Z\left\{(\cos \theta+i \sin \theta)^{n}\right\}$.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Solve the equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
(ii) Find the singular integral of the equation $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.

OR

(b) (i) Solve : $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 e^{2 x}+3 x^{2} y$.
(ii) Solve : $\left(D^{2}+2 D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)$
12. (a) (i) Find the Fourier series of $\mathrm{f}(x)=x$ in $-\pi<x<\pi$.
(ii) Find the Fourier series expansion of $\mathrm{f}(x)=|\cos x|$ in $-\pi<x<\pi$.

OR

(b) (i) Find the half range sine series of $\mathrm{f}(x)=x \cos \pi x$ in $(0,1)$.
(ii) Find the Fourier cosine series up to third harmonic to represent the function given by the following data :

$$
\begin{array}{lllllll}
x: & 0 & 1 & 2 & 3 & 4 & 5 \tag{8}\\
y: & 4 & 8 & 15 & 7 & 6 & 2
\end{array}
$$

13. (a) Find the displacement of a string stretched between two fixed points at a distance of $2 l$ apart when the string is initially at rest in equilibrium position and points of the string are given initial velocities v where $v=\left\{\begin{array}{c}\frac{x}{l} \text { in }(0, l) \\ \frac{2 l-x}{l} \text { in }(l, 2 l)\end{array}, x\right.$ being the distance measured from one end.

OR
(b) A long rectangular plate with insulated surface is $l \mathrm{~cm}$ wide. If the temperature along one short edge is $\mathrm{u}(x, 0)=\mathrm{k}\left(l x-x^{2}\right)$ for $0<x<l$, while the other two long edges $x=0$ and $x=1$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$, find the steady state temperature function $\mathrm{u}(x, y)$.
14. (a) Find the Fourier cosine and sine transform of $\mathrm{f}(x)=\mathrm{e}^{-\mathrm{ax}}$ for $x \geq 0$, $\mathrm{a}>0$. Hence deduce the integrals $\int_{0}^{\infty} \frac{\cos s x}{a^{2}+s^{2}} d s$ and $\int_{0}^{\infty} \frac{s \sin s x}{a^{2}+s^{2}} d s$.

OR

(b) (i) Find the Fourier transform of $f(x)=e^{-\frac{x^{2}}{2}}$ in $(-\infty, \infty)$.
(ii) Find the Fourier transform of $f(x)=1-|x|$ if $|x|<1$ and hence find the

$$
\begin{equation*}
\text { value of } \int_{0}^{\infty} \frac{\sin ^{4} t}{t^{4}} d t \tag{8}
\end{equation*}
$$

15. (a) (i) Find the Z-transforms of $\cos \frac{\mathrm{n} \pi}{2}$ and $\frac{1}{\mathrm{n}(\mathrm{n}+1)}$.
(ii) Using convolution theorem, evaluation $\mathrm{Z}^{-1}\left\{\frac{\mathrm{z}^{2}}{(\mathrm{z}-\mathrm{a})^{2}}\right\}$.

OR

(b) (i) Find the inverse Z-transform of $\frac{z}{z^{2}-2 z+2}$ by residue method.
(ii) Solve the difference equation $\mathrm{y}_{\mathrm{n}}+2+\mathrm{y}_{\mathrm{n}}=2$, given that $\mathrm{y}_{0}=0$ and $\mathrm{y}_{1}=0$ by using Z-transforms.
(8)

