ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
 B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2010
 REGULATIONS : 2008
 THIRD SEMESTER
 080100008 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (COMMON TO CIVIL / EEE / EIE / ICE / ECE / BIOMEDICAL / BIOTECH / AERO / AUTO / CSE / IT / MECHANICAL / CHEMICAL / FT / TT / TC)

PART - A

ANSWER ALL QUESTIONS

State the conditions for $f(x)$ to have Fourier series expansion
Write $\mathrm{a}_{0}, \mathrm{a}_{n}$ in the expansion of $\mathrm{x}+\mathrm{x}^{3}$ as Fourier Series in $(-\pi, \pi)$.
Expand $f(x)=1$ in a sine series in $0<x<\pi$
4. Find Root Mean Square value of the function $f(x)=x$ in the interval $(0, l)$.
5. Define Fourier Transform Pair.

Find Fourier Cosine transform of $e^{-2 x}$.
If $\mathrm{F}(\mathrm{S})$ is the Fourier Transform of $f(x)$ show that the Fourier Transform of $\mathrm{e}^{i a x} f(x)$ is $F(S+a)$.
8. State Parseval's Identity for Fourier Transform
9. Eliminate the arbitrary constants $\mathbf{a} \& \mathrm{~b}$ from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
10. Form the PDE by eliminating the functions from $z=f(x+t)+g(x-t)$
11. Find the complete integral $q=2 p x$.
12. Solve $\left(D^{3}-3 D D^{\prime 2}+2 D^{3}\right) z=0$
13. Find the nature of $P D E 4 u_{x x}+4 u_{x y}+u_{y y}+2 u_{x-} u_{y}=0$.
14. What are the various solutions of one dimensional Wave Equation?
15. A string is stretched and fastened to two points 'l' apart. Motion is started by displacing the string into the form $\mathrm{y}=\mathrm{y}_{0} \operatorname{Sin}\left(\frac{\pi x}{l}\right)$ from which it is released at time $\mathrm{t}=0$. Formulate this problem as the boundary value problem.
16. A rod of length 20 cm whose one end is kept at $30^{\circ} \mathrm{C}$ and the other end is kept at $70^{\circ} \mathrm{C}$ is maintained so until steady state prevails. Find the steady state temperature.
17. Find $Z\left[e^{-a n}\right]$
18. Prove that $Z[n]=\frac{z}{(z-1)^{2}}$
19. Prove that $Z[f(n+1)]=z F(z)-z f(0)$
20. State Initial and Final value theorem on Z- transform.

PART - B

ANSWER ANY FIVE QUESTIONS

21(a).If $f(x)=\left(\frac{\pi-x}{2}\right)$ find the Fourier Series of the period 2π in the interval $(0,2 \pi)$.
Hence deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$
(b). Find the Fourier expansion of $f(x)=x$ in the interval $(-\pi, \pi)$
22. Show that the Fourier Transform of $f(x)=\left\{\begin{array}{l}a^{2}-x^{2} \quad|x| \leq a \\ 0 \quad \text { otherwise }\end{array}\right.$ is
$2 \sqrt{\frac{2}{\pi}}\left(\frac{\sin a s-a s \cos a s}{s^{3}}\right)$ Hence deduce that $\int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4}$
Using Parseval's Identity show that $\int_{0}^{\infty}\left(\frac{\sin t-t \cos t}{t^{3}}\right)^{2} d t=\frac{\pi}{15}$
23.(a) Solve $(m z-n y) p+(n x-l z) q=\mid y-m x$
24. A string of length I is initially at rest in its equillibrium position and motion is started by giving each of its points is given a velocity $V=\left\{\begin{array}{l}c x \quad, 0 \leq x \leq l / 2 \\ c(l-x), l / 2 \leq x \leq l\end{array}\right.$ Find the displacement function $y(x, t)$.

25 (a) Evaluate $z^{-1}\left[\frac{z}{z^{2}+7 z+10}\right]$
(b) Using z-transforms solve $u(n+2)-5 u(n+1)+6 u(n)=4^{n}$ given that $u(0)=0, u(1)=1$

26(a) Find the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of, $y=f(x)$ as given in the following table:-

x	0	1	2	3	4	5	6
$f(x)$	9	18	24	28	26	20	9

Find the Fourier transform of $f(x)=\left\{\begin{array}{cr}1-|x| & |x| \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$
27. A metal bar 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so. Find the resulting temperature $u(x, t)$ taking $\mathrm{x}=0$ at A .

28(a) Solve $p(1+q)=q z$
(b)

Using Convolution theorem, evaluate

$$
\begin{equation*}
Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right] \tag{6}
\end{equation*}
$$

*****THE END*****

