ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011

REGULATIONS: 2008

THIRD SEMESTER

080100008 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATION

(COMMON TO AERO / AUTO / BIOMEDICAL / CIVIL / CSE / IT / EEE / EIE / ICE / ECE / MECHANICAL / BIOTECH. / CHEMICAL / FASHION TECH. / TEXTILE TECH. / TEXTILE CHEMISTRY / PRODUCTION ENGG.)

Time : 3	3 Hours Max.Marks : 100
	PART - A (10 x 2 = 20 Marks) ANSWER ALL QUESTIONS
1.	State Dirichlet's conditions.
2.	If f(x) = sinx in $(-\pi, \pi)$, then find the values of a_0 and a_n
3.	State Fourier integral theorem
4.	Find the Fourier cosine transform of e^{-x} .
5.	Find the singular integral of $z = px+qy+p^2$.
6.	Form the partial differential equation by eliminating the arbitrary
	constants a and b from $z = ax^3 + by^3$
7.	Classify the equation $\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$
8.	Write all the three possible solutions of one dimensional heat equation.
9.	Find $Z\left[\frac{1}{n}\right]$
10.	Prove that $Z[f(n+1)] = zF[z] - zf(0)$

PART - B

(5 x 16 = 80 Marks)

ANSWER ALL QUESTIONS

(8)

8

11. a) (i)Find the Fourier series for $f(x) = x^2$ in $(-\pi, \pi)$, hence deduce

the value of $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$

(ii)Find the Fourier series upto second harmonics for the function y=f(x) in 8 (0, 2π)

 $x: 0 \quad \frac{\pi}{3} \quad \frac{2\pi}{3} \quad \pi \quad \frac{4\pi}{3} \quad \frac{5\pi}{3} \quad 2\pi$ $f(x): 1 \quad 1.4 \quad 1.9 \quad 1.7 \quad 1.5 \quad 1.2 \quad 1$

b) (i)Find the Fourier sine series for the function $f(x) = x(\pi - x)$ in $(0,\pi)$, and hence deduce the value of $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots$ (8)

(ii)Find the Fourier expansion of f(x) = x in the interval $(-\pi, \pi)$

12. a)

Find the Fourier transform of Hence find the value of $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt$ OR 12. b) $f(\mathbf{x}) = \begin{cases} x & , \ 0 \le \mathbf{x} \le 1 \\ 2 - x & , \ 1 \le \mathbf{x} \le 2 \end{cases}$ 0 x > 2(i)Find the Fourier cosine transform of (ii)Find the Fourier transform of $e^{\frac{-x^2}{2}}$ is $e^{\frac{-s^2}{2}}$ 13. a) (i)Solve $(D^2 - DD' - 30D'^2)z = xy + e^{6x+y}$ (ii)Solve (3z - 4y)P + (4x - 2z)q = 2y - 3xb) (i)Form the partial differential equation by eliminating the arbitrary function f and g from z = f(x+ct) + g(x-ct)(ii)Solve $z = 1 + p^2 + q^2$

 $f(x) = \begin{cases} 1 - |x| , \text{ if } |x| < 1 \\ 0 , \text{ if } |x| > 1 \end{cases}$

8

8

8

8

8

8

15.

^{14.} a) A tightly stretched string with fixed end points x = 0 and x = l initially in

3

a position given by $y(x,0) = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. It is released from rest

from this position, find the displacement y at any time and at any distance from the end x = 0.

OR

b) A square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x,20) = x(20 - x) when 0 < x < 20, while the other three edges are kept at 0°C. Find the steady state temperature in the plate.

euges are kept at 0 C . Find the steady state temperature in the plate.

a)
(i)Find
$$Z \begin{bmatrix} 1 \\ (n+1)(n+2) \end{bmatrix}$$

(ii)Find $Z^{-1} \begin{bmatrix} \frac{z(z^2-z+2)}{(z+1)(z-1)^2} \end{bmatrix}$ by method of partial fraction
8

OR

(i) Using Z-transform, solve

$$y(n+2) - 4y(n+1) + 4y(n) = 0$$
 where
 $y(0) = 1$ and $y(1) = 0$

(ii)Using Convolution theorem evaluate

$$Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$$

8

8

*****THE END*****