ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011

REGULATIONS : 2008

PART - B

ANSWER ALL QUESTIONS

$(5 \times 16=80$ Marks $)$

080100008 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATION (COMMON TO AERO / AUTO / BIOMEDICAL / CIVIL / CSE / IT / EEE / EIE / ICE / ECE / MECHANICAL / BIOTECH. / CHEMICAL / FASHION TECH. I TEXTILE TECH. / TEXTILE CHEMISTRY / PRODUCTION ENGG.)

Time : 3 Hours

PART - A

ANSWER ALL QUESTIONS

State Dirichlet's conditions.
If $f(x)=\sin x$ in $(-\pi, \pi)$, then find the values of a_{0} and a_{n}
State Fourier integral theorem
Find the Fourier cosine transform of e^{-x}
Find the singular integral of $z=p x+q y+p^{2}$.
Form the partial differential equation by eliminating the arbitrary constants a and b from $z=a x^{3}+b y^{3}$

Classify the equation $\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$
Write all the three possible solutions of one dimensional heat equation.
Find $Z\left[\frac{1}{n}\right]$
10.

Prove that $Z[f(n+1)]=z F[z]-z f(0)$
$x: \quad 0 \quad \frac{\pi}{3} \quad \frac{2 \pi}{3} \quad \pi \quad \frac{4 \pi}{3} \quad \frac{5 \pi}{3} \quad 2 \pi$
$\begin{array}{llllllll}f(x): & 1 & 1.4 & 1.9 & 1.7 & 1.5 & 1.2 & 1\end{array}$
OR
b) (i)Find the Fourier sine series for the function $f(x)=x(\pi-x)$ in $(0, \pi)$, and hence deduce the value of $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\ldots$
(ii) Find the Fourier expansion of $f(x)=x$ in the interval $(-\pi, \pi)$

Max.Marks : 100

1. a) (i)Find the Fourier series for $f(x)=x^{2}$ in $(-\pi, \pi)$, hence deduce the value of $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots$
(ii)Find the Fourier series upto second harmonics for the function $y=f(x)$ in
$(0,2 \pi)$
(10 x $2=20$ Marks)

Find the Fourier transform of

$$
f(x)= \begin{cases}1-|x| & , \text { if }|\mathrm{x}|<1 \\ 0 & \text {, if }|\mathrm{x}|>1\end{cases}
$$

Hence find the value of $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t$
OR
12. b)
(i)Find the Fourier cosine transform of $f(x)= \begin{cases}x & , 0<x<1 \\ 2-x & , 1<x<2 \\ 0 & , \mathrm{x}>2\end{cases}$
(ii)Find the Fourier transform of $e^{\frac{-x^{2}}{2}}$ is $e^{\frac{-s^{2}}{2}}$
a) (i)Solve $\left(D^{2}-D D^{\prime}-30 D^{\prime 2}\right) z=x y+e^{6 x+y}$
(ii)Solve $(3 z-4 y) P+(4 x-2 z) q=2 y-3 x$

OR

b) (i)Form the partial differential equation by eliminating the arbitrary function f and g from $z=f(x+c t)+g(x-c t)$
(ii) Solve $z=1+p^{2}+q^{2}$

8
a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. It is released from rest from this position, find the displacement y at any time and at any distance from the end $x=0$

OR

b) A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x)$ when $0<x<20$, while the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature in the plate
(ii) Using Convolution theorem evaluate $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
*****THE END*****
(i)Find $Z\left[\frac{1}{(n+1)(n+2)}\right]$
(ii)Find $Z^{-1}\left[\frac{z\left(z^{2}-z+2\right)}{(z+1)(z-1)^{2}}\right]$ by method of partial fraction

OR
b) (i)Using Z-transform, solve
$y(n+2)-4 y(n+1)+4 y(n)=0 \quad$ where
$y(0)=1$ and $y(1)=0$
15. a)
14. a) A tightly stretched string with fixed end points $x=0$ and $x=l$ initially in

