\square

Question Paper Code : 51772

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
Fifth/Third Semester
Civil Engineering

MA 2211/MA 31/MA 1201 A/CK 201/080100008/080210001/10177 MA 301 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS /

MATHEMATICS - III
(Common to all branches)
(Regulations 2008/2010)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

PART - A ($10 \times 2=20$ Marks $)$

1. Form the partial differential equations of all planes passing through the origin.
2. Find the complete integral of $\sqrt{p}+\sqrt{q}=1$.
3. If $x^{2}=\frac{\pi}{3}-4 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\cos (n x)}{n^{2}}$ in $-\pi<x<\pi$, then find $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
4. State TRUE or FALSE : Fourier series of period 20 for the function $f(x)=x \cos (x)$ in the interval $(-10,10)$ contains only sine terms. Justify your answer.
5. Write down the initial and boundary conditions for the boundary value problem when a string of length l is tightly fastened on both ends and the midpoint of the string is taken to height of k are released from rest.
6. The ends A and B of a rod of length 20 cm have their temperature kept at $10^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. Find the steady state temperature distribution on the rod.
7. If $\mathrm{F}(\mathrm{s})$ is the Fourier transform of $\mathrm{f}(x)$, obtain the Fourier transform of $\mathrm{f}(x-2)+\mathrm{f}(x+2)$.
8. Given that $\mathrm{F}_{\mathrm{S}}\{\mathrm{f}(x)\}=\frac{\mathrm{s}}{\mathrm{s}^{2}+\mathrm{a}^{2}}$ for $\mathrm{a}>0$, hence find $\mathrm{F}_{\mathrm{C}}\{x \mathrm{f}(x)\}$.
9. If $Z\left\{n^{2}\right\}=\frac{z^{2}+z}{(z-1)^{3}}$, then find $Z\left\{(n+1)^{2}\right\}$
10. State damping rule related to Z-transform and then find $Z\left(n^{n}\right)$.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Find the general solution of the equation :

$$
\begin{equation*}
x\left(z^{2}-y^{2}\right) \frac{\partial z}{\partial x}+y\left(x^{2}-z^{2}\right) \frac{\partial z}{\partial y}=z\left(y^{2}-x^{2}\right) \tag{8}
\end{equation*}
$$

(ii) Solve $\left(D^{3}-7 D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (x+2 y)+3 \mathrm{e}^{2 x+y}$.

OR

(b) (i) Form the partial differential equations by eliminating the arbitrary function $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
(ii) Obtain the complete integral of $\mathrm{p}^{2}+x^{2} \mathrm{y}^{2} \mathrm{q}^{2}=x^{2} \mathrm{z}^{2}$.
12. (a) (i) Find the Fourier series for

$$
f(x)=\left\{\begin{array}{lc}
-x, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

Hence deduce the sum of the series $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$ to ∞.
(ii) Find the Fourier series up to second harmonic to represent the function given by the following discrete data :

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
$\mathrm{f}(x)$	1.0	1.4	1.9	1.7	1.5	1.2	1.0
OR							

(b) (i) Find the half-range Fourier Cosine series expansion for the function $\mathrm{f}(x)=x$ in $0<x<l$. Hence deduce the sum of the series $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots$.
(ii) Find the complex form of the Fourier series of $\mathrm{f}(x)=\mathrm{e}^{-x},-1<x<1$.
13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially displaced to the form $2 \sin \left(\frac{3 \pi x}{l}\right) \cos \left(\frac{2 \pi x}{l}\right)$ and then released. Find the displacement of the string at any distance x from one end at any time t.

OR

(b) A rectangular plate is bounded by the lines $x=0, x=\mathrm{a}, \mathrm{y}=0$ and $\mathrm{y}=\mathrm{b}$ and the edge temperatures are $u(x, 0)=10 \sin \left(\frac{3 \pi x}{a}\right)+8 \sin \left(\frac{5 \pi x}{a}\right), u(0, y)=0, u(x, b)=0$ and $u(a, y)=0$. Find the steady state temperature distribution $u(x, y)$ at any point of the plate.
14. (a) (i) Find the Fourier transform of

$$
\begin{align*}
& f(x)= \begin{cases}1-x^{2} & \text { if }|x|<1 \\
0 & \text { if }|x|>1\end{cases} \\
& \text { Hence evaluate } \int_{0}^{\infty}\left(\frac{\sin s-s \cos s}{s^{3}}\right) \cos \left(\frac{s}{2}\right) d s \tag{8}
\end{align*}
$$

(ii) Find the Fourier Sine transform of $\mathrm{f}(x)=\mathrm{e}^{-\mathrm{ax}}$ and hence find Fourier Sine transform $\frac{x}{\mathrm{a}^{2}+x^{2}}$

OR

(b) (i) Find the Fourier transform of

$$
\begin{align*}
& \mathrm{f}(x)= \begin{cases}1 & \text { if }|x|<\mathrm{a} \\
0 & \text { if }|x|>\mathrm{a}>0\end{cases} \\
& \text { Hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x \tag{8}
\end{align*}
$$

(ii) Find the Fourier Cosine transform of $f(x)=\mathrm{e}^{-\mathrm{ax}}$. Hence, evaluate the following :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x \tag{8}
\end{equation*}
$$

15. (a) (i) Derive a difference equation by eliminating the constants from $y_{n}=(A+B n) 3^{n}$.
(ii) Use convolution theorem to find the inverse Z-transform of $\frac{z^{2}}{(z-1 / 2)(z-1 / 4)}$

OR

(b) (i) State initial value theorem. Use it to find u_{0}, u_{1}, u_{2} and u_{3}, where

$$
\begin{equation*}
U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}} \tag{8}
\end{equation*}
$$

(ii) Solve the equation $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ given $y_{0}=y_{1}=0$.

