\square

Question Paper Code : 27327

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester
Civil Engineering
MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all branches except Environmental Engineering, Textile Chemistry, Textile Technology, Fashion Technology and Pharmaceutical Technology)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Construct the partial differential equation of all spheres whose centres lie on the Z - axis, by the elimination of arbitrary constants.
2. Solve $\left(D+D^{\prime}-1\right)\left(D-2 D^{\prime}+3\right) z=0$.
3. Find the root mean square value of $f(x)=x(l-x)$ in $0 \leq x \leq l$.
4. Find the sine series of function $f(x)=1,0 \leq x \leq \pi$.
5. Solve $3 x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$; by method of separation of variables.
6. Write all possible solutions of two dimensional heat equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
7. If $F(s)$ is the Fourier Transform of $f(x)$, prove that $F\{f(a x)\}=\frac{1}{a} F\left(\frac{s}{a}\right), a \neq 0$.
8. Evaluate $\int_{0}^{\infty} \frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)} d s$ using Fourier Transforms.
9. Find the Z - transform of $\frac{1}{n+1}$.
10. State the final value theorem. In Z transform.
11. (a) (i). Find complete solution of $z^{2}\left(p^{2}+q^{2}\right)=\left(x^{2}+y^{2}\right)$.
(ii) Find the general solution of $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=2 \cos y-x \sin y$.
Or
(b) (i) Find the general solution of $\left(z^{2}-y^{2}-2 y z\right) p+(x y+z x) q=(x y-z x)$.
(ii) Find the general solution of $\left(D^{2}+D^{\prime 2}\right) z=x^{2} y^{2}$.
12. (a) (i) Find the Fourier series expansion the following periodic function of period $4 f(x)=\left\{\begin{array}{cc}2+x & -2 \leq x \leq 0 \\ 2-x & 0<x \leq 2\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.
(ii) Find the complex form of Fourier series of $f(x)=e^{\alpha x}$ in the interval $(-\pi, \pi)$ where a is a real constant. Hence, deduce that $\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}=\frac{\pi}{a \sinh a \pi}$.

Or

(b) (i) Find the half range cosine series of $f(x)=(\pi-x)^{2}, 0<x<\pi$. Hence find the sum of series $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots$.
(ii) Determine the first two harmonics of Fourier series for the following data.

$$
\begin{array}{ccccccc}
x: & 0 & \frac{\pi}{3} & \frac{2 \pi}{3} & \pi & \frac{4 \pi}{3} & \frac{5 \pi}{3} \tag{8}\\
f(x): & 1.98 & 1.30 & 1.05 & 1.30 & -0.88 & -0.25
\end{array}
$$

13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $v=\left\{\begin{array}{cl}\frac{2 k x}{l} & \text { in } 0<x<\frac{l}{2} \\ \frac{2 k(l-x)}{l} & \text { in } \frac{1}{2}<x<l\end{array}\right.$. Find the displacement of the string at any distance x from one end at any time t.
(b) A bar 10 cm long with insulated sides has its ends A and B maintained at temperature $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively, until steady state conditions prevails. The temperature at A is suddenly raised to $90^{\circ} \mathrm{C}$ and at the same time lowered to $60^{\circ} \mathrm{C}$ at B . Find the temperature distributed in the bar at time t.
14. (a) (i) Find the Fourier sine integral representation of the function $f(x)=e^{-x} \sin x$.
(ii) Find the Fourier cosine transform of the function

$$
\begin{equation*}
f(x)=\frac{e^{-a x}-e^{-b x}}{x}, x>0 \tag{8}
\end{equation*}
$$

Or
(b) (i) Find the Fourier transform of the function $f(x)=\left\{\begin{array}{cc}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.$. Hence deduce that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t=\frac{\pi}{3}$.
(ii) Verify the convolution theorem for Fourier transform if $f(x)=g(x)=e^{-x^{2}}$.
15. (a) (i) If $U(z)=\frac{z^{3}+z}{(z-1)^{3}}$, find the value of u_{0}, u_{1} and u_{2}.
(ii) Use convolution theorem to evaluate $z^{-1}\left\{\frac{z^{2}}{(z-3)(z-4)}\right\}$.

$$
\mathrm{Or}
$$

(b) (i) Using the inversion integral method (Residue Theorem), find the inverse Z- transform of $U(z)=\frac{z^{2}}{(z+2)\left(z^{2}+4\right)}$.
(ii) Using the Z- transform solve the difference equation $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0, u_{1}=1$.

