	ANNA UNIVERSITY COIMBATORE	
	B.E. / B.TECH. DEGREE EXAMINATIONS : JUNE / JULY 2009	
	REGULATIONS : 2008	
	SECOND SEMESTER	
	080040002 - ENGINEERING PHYSICS - II	
199	(COMMON TO ALL BRANCHES)	
TIME : 3 Ho	urs	Max.Marks : 100
	PART - A	

ANSWER ALL QUESTIONS

 $(20 \times 2 = 40 \text{ MARKS})$

- 1. Define the terms 'mean free path' and 'mean collision time'.
- 2. Why $J = E / \rho$ is called microscopic form of Ohm's law?
- Evaluate the value of Fermi distribution function for an energy kT above the Fermi energy.
- 4. What do you mean by carrier concentration in metals?
- 5. State any two properties of semiconductor.
- 6. Distinguish between intrinsic and extrinsic semiconductor.
- 7. Why do we prefer Si for transistors and Ga As for LASER diodes?
- 8. For an intrinsic germanium at 300 K, $n_i = 2.4 \times 10^{19}$ / m^3 , μ_e and μ_h are 0.39 m² V¹s⁻¹ and 0.19 m² V⁻¹s⁻¹ respectively. Calculate its electrical conductivity.
- 9. On the basis of spin how the magnetic materials are classified?
- 10. What is energy product? Give its importance.
- 11. Mention the condition for a material to behave as a superconductor.
- 12. Calculate the critical current which can pass through a long thin superconducting wire of aluminum of diameter 1 mm. The critical magnetic field for aluminum is 7.9 x 10³ A/m.
- 13. List two desired characteristics of a good dielectric material.

- 14. How does polarization vary with temperature?
- 15. Compare active and passive dielectrics.
- 16. What are the various sources by which power loss occurs in a dielectric?
- 17. Why metallic glasses are preferred for transformer core materials?
- 18. How shape memory alloys are trained?
- 19. Write down any two properties of nano particles.
- 20. Write the various forms of carbon nano tubes.

PART – B

(5 x 12 = 60 MARKS)

4

8

8

ANSWER ANY FIVE QUESTIONS

- 21. a) Deduce a mathematical expression for electrical conductivity of a conducting 8 material based on classical free electron theory
 - b) State any four demerits of classical free electron theory.
- 22. a) Derive an expression for the Fermi energy of electrons in solids at 0K.
 - b) Show that at 0K the average energy of an electron is 3/5 of the Fermi 4 energy.
- a) Obtain an expression for density of electrons in the conduction band of an 8 intrinsic semiconductor.
 - b) Briefly describe the variation of Fermi level with temperature in the case of ntype semiconductor.
- 24. a) Draw the B-H curve for a ferro magnetic material and explain the same on 8 the basis of domain theory.
 - b) Differentiate between hard and soft magnetic materials.
- 25. a) Discuss Type-I and Type-II superconductors with suitable examples.
 - b) List any four applications of superconductors.

1

2

26. a) Derive the expressions for electronic and ionic polarisability in dielectric 8 materials.

4

4

8

4

- b) Mention any four applications of ferro electric materials.
- 27. a) What is meant by internal field in a solid dielectric? Deduce an expression 8 for the local field for structures with cubic symmetry.
 - b) Obtain Clausius-Mosotti relation.

28. a) Describe the plasma arcing method of producing nano particles.b) Mention any four applications of carbon nano tubes.

*****THE END*****

3