	 of other colleges with	The real Property lies, the party lies, the pa	demand the same	gentlement of			 	
Reg. No.:								

Question Paper Code: 53082

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Second Semester Civil Engineering PH 2161 – ENGINEERING PHYSICS – II

(Common to all Branches) (Regulations 2008)

Time: Three Hours And the first and a wall acceptable as the acceptable as the Maximum: 100 Marks

talifica likifica areatamatepapa anta inili haza tamenegar Answer ALL questions.

PART – A (10×2=20 Marks)

- 1. State Wiedemann-Franz Law.
- 2. At zero Kelvin temperature, what is the value of Fermi function at (i) E = 0 and at (ii) $\mathbf{E} = \mathbf{E}_{\mathbf{F}}$.
- 3. The hole concentration of a semiconductor is increased by 20% from its intrinsic value. Obtain the resultant electron concentration with respect to the value of intrinsic concentration.
- 4. What are the advantages of compound semiconductors?
- 5. What is Bohr magneton? Write an expression for it.
- 6. What is cryotron?
- 7. What is the relation between dielectric constant and dielectric susceptibility? Mention its limits.
- 8. Mention the applications of dielectric materials.
- 9. Mention the applications of metallic glasses.
- 10. What is known as the size effect of nanoparticles?

PART - B

(5×16=80 Marks)

		PART - B	(0×10-00 marks)
11.	a)	 a) Derive expressions for electrical conductivity metal. 	y and thermal conductivity of a (8+8)
		(OR)	
	b)	b) Define density of states of electrons and deriuses.	(14+2)
12.	a)	 a) Derive expressions for the electron and hole semiconductor. Hence deduce the law of mas 	concentrations of an intrinsic
		(OR)	
•	b)	 b) What is Hall effect? Derive an expression fo material and list the applications of Hall effect. 	
13.	a)	 a) i) Explain the property of magnetic hystere soft magnetic materials based on the nate 	are of hysteresis loop. (8)
		ii) Discuss the domain theory of ferromagne	tism. (8)
		. (OR) by a final arrival will be	g text of the entre and children for the Color
	b)	b) i) Explain the properties of Type – I and Ty	pe – II superconductors. (8)
		ii) Discuss qualitatively the BCS theory of s	uperconductors. (8)
14.	a)	a) Derive expressions for the different types of	polarizations of dielectric media. (16)
		(OR)	
	b)	 b) Derive an expression for the internal field of Clausius-Mossotti equation. 	a dielectric and hence deduce the (16)
15.	a)		(16) (16)
		(OR)	
	b)	 b) i) Discuss one top-down and one bottom-up nanoparticles. 	
		ii) Discuss the properties of carbon nanotube	es and list their applications. (8)