25M | | | | . ~ | | |------------|--|--|-----|--| | Reg. No. : | | | | | | | | | | | ## Question Paper Code: 24086 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018. Second Semester Civil Engineering PH 2161 — ENGINEERING PHYSICS - II (Common to all Branches) (Regulations 2008) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ - 1. Give the statement of Wiedemann-Franz law. - 2. Mention two drawbacks of classical free electron theory of metals. - 3. Find the resistance of an intrinsic Ge rod 1 cm long, 1 mm wide, and 0.5 mm thick at 300 K. For Ge, $n_i = 2.5 \times 10^{19}/m^3$, $\mu_e = 0.39$ m² v⁻¹ s⁻¹ and $\mu_p = 0.19$ m² v⁻¹ s⁻¹, at 300 K. - 4. Given an extrinsic semiconductor, how will you find whether it is n-type or p-type. - The magnetic field strength of silicon is 1500 Am^{-1} . If the magnetic susceptibility is $-(0.3 \times 10^{-5})$. Calculate the magnetisation and flux density is silicon. - 3. What is meant by persistent current? - 7. Define dielectric constant. - 8. Distinguish between dielectric loss and dielectric breakdown. - 9. Mention some of the applications of shape memory alloys. - 10. Write any four properties of Nanomaterials. ## PART B — $(5 \times 16 = 80 \text{ marks})$ | 11. | (a) | (i) | Obtain Wiedemann Franz law using the expressions of electric and thermal conductivity and find the expression for Loren number. | |-----|----------|---------------|--| | | | (ii) | The density of Silver is 10.5×10^3 kg/m ³ . The atomic weight of silver is 107.9. Each silver atom provides one conduction electron. To conductivity of silver at 20°C is 6.8×10^7 ohm ⁻¹ m ⁻¹ . Calculate the density of electrons and also the mobility of electrons in silver. | | | | (iii) | Calculate the electrical and thermal conductivities of a metal with the relaxation time of 10^{-14} second at 300 K. The electron density $6\times10^{26} {\rm m}^{-3}$. | | | | | $\mathbf{Or}_{\mathbf{r}}$ | | | (b) | (i) | Derive an expression for electrical conductivity based on Quantu theory. | | | 7 .
2 | (ii) | Write the expression for Fermi distribution function and explain with suitable diagram. How does it vary with temperature? | | | | (iii) | Calculate the Fermi energy and Fermi temperature in a metal. The Fermi velocity of electrons in the metal is 0.86×10^6 m/s. | | 12. | (a) | (i) | What is Fermi level in intrinsic semiconductor? And discuss the variation of Fermi level in intrinsic semiconductor with temperature. | | | | (i <u>i</u>) | Derive the expression for electrical conductivity in an intrins semiconductor and explain the variation of it with temperature. | | | | | \mathbf{Or}^{-} | | | (b) | (i) | How the Fermi level changes its position with the temperature an impurity concentration in N-type semiconductors? | | | | (ii) | Define Hall effect in semiconductors. How the Hall coefficient is determined? (10 | | 13. | (a) | (i) | Explain the domain theory of Ferromagnetism and hence describ
the magnetic hysteresis. (10 | | | | (ii) | What are Ferrites? Explain magnetic recording and read ou mechanisms. | | . : | | | Or | | | (b) | (i) | Describe the different properties of superconductors and als explain the classification of super conductors as Type I and Type I superconductors. | | | 1 | (;;) | T-1: DOO I | | ì | 1 | (11) | Explain BCS theory of superconductors. (6 | | : | | | | | | | Define the following: | | |------------|--------------|--|-----------------| | | . , | (1) Dielectric constant ε_r , | | | | | (2) Polarizability, α | | | | | (3) Polarization vector, \vec{P} | | | | | (4) Electric flux density, D | , | | | : : | (5) Electric susceptibility, χ . | | | | | Give also the necessary equations relating the above quantities. | | | | (ii) | Calculate the electronic polarizability of an argon atom whose $\varepsilon_r=1.0024$ at NTP and $N=2.7\times 10^{25}$ atoms/m³. | | | (b) | (i) | Define 'internal field', Obtain the expression for internal field usin Lorentz method and hence deduce the Clausius-Mosotti equation. $(2+6+4)$ | - | | | (ii) | , and a supplied the state of t | 13 | | | | respectively. The electronic polarizability of the atom is 3.28×10^{-4} Fm ² . If sulphur solid has cubic symmetry, what will be the relativ permittivity? Take Avogadro number as 6.023×10^{20} $\varepsilon_0 = 8.86 \times 10^{-12}$ Fm ⁻¹ . | e
6, | | (a) | Expl
adva | Fm ² . If sulphur solid has cubic symmetry, what will be the relative permittivity? Take Avogadro number as 6.023×10^{20} | e
6,
1) | | (a) | Expl
adva | Fm ² . If sulphur solid has cubic symmetry, what will be the relative permittivity? Take Avogadro number as 6.023×10^{20} $\varepsilon_0 = 8.86 \times 10^{-12} \mathrm{Fm^{-1}}$. (4) | e
6,
1) | | (a)
(b) | Expl
adva | Fm ² . If sulphur solid has cubic symmetry, what will be the relative permittivity? Take Avogadro number as 6.023×10^{20} $\varepsilon_0 = 8.86 \times 10^{-12} \mathrm{Fm^{-1}}$. (4) Lain the characteristics of Shape Memory Alloy and mention it antages and disadvantages. (16) | e 6, 1) s) | | | adva | Fm². If sulphur solid has cubic symmetry, what will be the relative permittivity? Take Avogadro number as 6.023×10^{20} $\varepsilon_0 = 8.86 \times 10^{-12} \mathrm{Fm^{-1}}$. (4) lain the characteristics of Shape Memory Alloy and mention it antages and disadvantages. (16) Or Describe plasma arcing technique with a diagram to fabricate name of the state of the substitution | e 6, 1) s) o) r |