Reg. No.:						
•	 	Ь	,		 	

Question Paper Code: 53539

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Second Semester

Civil Engineering

PH 6251 — ENGINEERING PHYSICS – II

(Common to all branches)

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the properties of metals described inadequately by Drude's model?
- 2. Define the mobility of electrons.
- 3. What is Hall voltage? Which property of an extrinsic semiconductor depends on Hall voltage?
- 4. The electrical resistivity of certain intrinsic semiconductor is $0.40 \ \Omega \,\mathrm{m}$. The electron and hole mobilities are $0.64 \ m^2 \ V^{-1} s^{-1}$ and $0.36 \ m^2 \ V^{-1} s^{-1}$ respectively. Calculate the electron and hole densities.
- 5. Liquid oxygen in a test tube is suspended between the pole pieces of a magnet. How does it behave? What type of magnetic material is liquid oxygen?
- 6. The critical field for niobium at 0 K is 2×10 A/m and 1×10^5 Am/at 8 K. Calculate the transition temperature of the element.
- 7. What are the uses of dielectric material?
- 8. Define dielectric loss.
- 9. Why metallic glasses are used as transformer core materials?
- 10. What is Kerr effect?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) What are the essential concepts of classical free theory of metals and quantum free electron theory of metals? Discuss the success and failures of both the theories.
 - (ii) Derive an expression for electrical conductivity of metals based on the concepts of classical free electron theory.

(iii) A copper wire 3.2 mm in diameter, carries a current of 0.5 A. Valency of copper is one. Atomic weight and density of copper are 63.5 and 8900 kg/m³ respectively. Calculate the speed of conduction electrons.

Or

- (b) (i) What is meant by Fermi energy in metals? Based on quantum theory derive an expression for density of energy states, hence obtain an expression for Fermi energy.
 - (ii) The Fermi energy for Al is 11.7 eV. Find the probability that the state with energy 11.8 eV be occupied at 0 K and at room temperature (300 K.).
- 12. (a) Derive the expressions for intrinsic carrier concentration and electrical conductivity of an intrinsic semiconductor. Explain the variation of electrical conductivity with temperature and band gap of the semiconductor.

Or

- (b) Explain p-type semiconductor and derive an expression for the position of Fermi level. Explain the behaviour of this semiconductor at high temperature.
- 13. (a) (i) Distinguish between hard and soft magnetic materials with their applications.
 - (ii) Write a note on ferrites. Give reasons why ferrites are preferred over ferromagnetic materials as core materials for high frequency applications.

Or

- (b) (i) Distinguish between type I and type II superconductors.
 - (ii) Explain BCS theory of superconductivity.
 - (iii) Explain SQUID.
- 14. (a) Explain the different types of polarization mechanisms in dielectrics and sketch their dependence on the frequency of applied electric field.

Or

- (b) What is meant by local field in a dielectric and how it is calculated for a cubic structure? Deduce Clausius-Mosotti relation.
- 15. (a) What are metallic glasses? Explain how they are prepared by melt spinning method. Also mention their application.

Or

- (b) Explain with necessary diagrams the synthesis of nanomaterials using the following methods:
 - (i) Chemical vapour deposition
 - (ii) Pulsed laser deposition.