Reg.	No.			 				
		THE PERSON NAMED IN		 			, ,	 ı

Question Paper Code: 54016

B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2018

First Semester Civil Engineering

MA 8151 - ENGINEERING MATHEMATICS - I

Common to All Branches (Except Marine Engineering) (Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

1. Sketch the graph of the function $f(x) = \begin{cases} 1+x \; ; x < -1 \\ x^2 \; ; -1 \le x \le 1 \end{cases}$ and use it to determine the 2-x ; $x \ge 1$

value of "a" for which $\lim_{x\to a} f(x)$ exists?

- 2. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangents? If so where?
- 3. If $x = r \cos \theta$ and $y = r \sin \theta$ then find $\frac{\partial r}{\partial x}$.
- 4. If x = u v and $y = \frac{u}{v}$ then find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 5. What is wrong with the equation $\int_{-1}^{2} \frac{4}{x^3} dx = \left[\frac{-2}{x^2} \right]_{-1}^{2} = \frac{3}{2}$?
- 6. Evaluate $\int_{4}^{\infty} \frac{1}{\sqrt{x}} dx$ and determine whether it is convergent or divergent.

- 7. Find the value of $\int_{0}^{\infty} \int_{0}^{y} \left(\frac{e^{-y}}{y} \right) dx dy.$
- 8. Find the limits of integration in the double integral $\iint_R f(x,y) dx dy$ where R is in the first quadrant and bounded x = 1, y = 0, $y^2 = 4x$.
- 9. Convert $x^2y''-2xy'+2y=0$ into a linear differential equation with constant coefficients.
- 10. Find the particular integral of $(D-1)^2$ y = $e^x \sin x$.

(5×16=80 Marks) (

(8)

11. a) i) For what value of the constant "c" is the function "f" continuous on

$$(-\infty,\infty), f(x) = \begin{cases} cx^2 + 2x \; ; \; x < 2 \\ x^3 - cx \; ; \; x \ge 2 \end{cases}$$
 (8)

ii) Find the local maximum and minimum values of $f(x) = \sqrt{x} - \sqrt[4]{x}$ using both the first and second derivative tests. (8)

(OR)

- b) i) Find y" if $x^4 + y^4 = 16$. (6)
 - ii) Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3, 3) and at what point the tangent line horizontal in the first quadrant. (10)
- 12. a) i) If $u = (x^2 + y^2 + z^2)^{-1/2}$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. (8)
 - ii) Find the dimensions of the rectangular box without a top of maximum capacity, whose surface area is 108 sq.cm. (8)

(OR)

- b) i) Obtain the Taylor's series expansion of $x^3 + y^3 + xy^2$ in terms of powers of (x-1) and (y-2) up to third degree terms.
 - ii) Find the maximum or minimum values of $f(x, y) = 3x^2 y^2 + x^3$. (8)

- 13. a) i) Evaluate $\int \frac{\tan x}{\sec x + \cos x} dx$. (8)
 - ii) Evaluate $\int e^{ax} \cos bx \, dx$ using integration by parts. (8)
 (OR)
 - b) i) Evaluate $\int \frac{x}{\sqrt{x^2 + x + 1}} dx$. (8)
 - ii) Evaluate $\int_{0}^{\pi/2} \cos^5 x \, dx$ (8)
- 14. a) i) Change the order of integration for the given integral $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} (x^{2}) dy dx$ and evaluate it. (8)
 - ii) Evaluate by changing to polar coordinates $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy$ (8)
 - b) i) Evaluate $\iiint (x \ y \ z) dx dy dz$ over the first octant of $x^2 + y^2 + z^2 = a^2$. (8)
 - ii) Using double integral, find the area bounded by y = x and $y = x^2$. (8)
- 15. a) i) Solve $\frac{d^2y}{dx^2} + y = \cot x$ by using method of variation of parameters. (8)
 - ii) Solve (D^2-2D) y = $5e^x \cos x$ by using method of undetermined coefficients. (8) (OR)
 - b) i) Solve $[(x+1)^2 D^2 + (x+1) D + 1] y = 4 \cos \log (x+1)$. (8)
 - ii) Solve $Dx + y = \sin 2t \text{ and } -x + Dy = \cos 2t.$ (8)