

Reg. No.:			<u> </u>	

Question Paper Code: 40061

B.E. DEGREE EXAMINATION, APRIL/MAY 2018

Second Semester

Civil Engineering

PH 8201: PHYSICS FOR CIVIL ENGINEERING

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is called fenestration? Give two examples.
- 2. What is meant by cooling load?
- 3. The intensity of sound during heavy traffic is 10^{-4} Wm⁻². Calculate intensity level in decibel.
- 4. What is a floating floor? Why is it used in buildings?
- Define Lambert's Cosine law.
- 6. What is the purpose of supplementary artificial lighting?
- 7. Define pseudoelasticity in shape memory alloys.
- 8. List any four applications of metallic glasses.
- 9. What are cyclones?
- 10. Define epicentre of an earthquake.

PART - B

	PART – B	(5×16=80 Marks)
11. a) i)	What is thermal insulation? Give its importance. Name insulators.	
ii)	Describe the factors with example components that affinerformance of buildings. (OR)	
b) Wh win	nat is natural ventilation? Give its purpose. Explain the n d driven and stack ventilation mechanisms.	e principles behind (16)
12. a) Def usir	fine reverberation time. Derive Sabine's formula for reve ng growth and decay method. (OR)	
b) i) V	Write short notes on porous absorbers. Give two example	es. (6)
ii)) I	Describe airborne sound and impact sound insulation m	Aggirom out. (10)
13. a) 1) E	Explain in detail about photobic, mesophic and scotpic v What is glare? How do you reduce it?	easurements. (10) isions. (12) (4)
	(OR)	
b) List accer	any four artificial light sources and discuss about ambic nt lighting in buildings.	ent, task and (16)
	t are composites? Explain in detail about the structure a per Reinforced Plastics (FRP) and Fibre Reinforced Meta (OR) are ceramics? With neat diagrams, explain the slip cas ng and gas pressure bonding many c	nd applications als (FRM). (16)
pressi	ng and gas pressure bonding manufacturing processes.	ting, isostatic (16)
15. a) With r waves	necessary diagrams, explain different types of body wave in seismology. (OR)	s and surface
b) Discus	s in detail about fire hazards and guidance on preventiv	ve measure. (16)