

,	٠.							l
Reg. No.:		·		 	<u> </u>			

Question Paper Code: 40064

B.E. DEGREE EXAMINATION, APRIL/MAY 2018

Second Semester Aeronautical Engineering

PH 8251 : MATERIALS SCIENCE

(Common to Automobile Engineering/Industrial Engineering/Industrial Engineering and Management/Manufacturing Engineering/Marine Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation Engineering/Mechatronics Engineering/Production Engineering/Robotics and Automation Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Define Hume Rothery's Empirical rules for the substitutional solid solutions.
 - 2. What is the maximum number of phases that can coexist in equilibrium in a three component system?
 - 3. Calculate the atomic percent of carbon in mild steel containing 0.2 wt% of carbon.
 - 4. Define Fick's law of diffusion.
 - 5. What is meant by slip plane system?
 - 6. What is meant by CRSS?
 - 7. Distinguish between hard and soft magnetic materials.
 - 8. Define the electronic polarizability of an atom.
 - 9. What are the different types of ceramics?
- 10. What are composites?

	A SOLIT MINE DINE
PART – B	(5×16=80 Marks
11. a) Explain in detail the different phases in a eutectic phase microstructural changes on cooling.	diagram with their
(OR)	(16)
b) i) What are the applications of lever rule?	(0)
ii) Explain in detail the different phases in a peritectic ph	(3) ^{nase diagram} . (13)
12. a) 1) Distinguish between hypo and hypometry	
ii) Describe in detail the different microstructures of slow (OR)	, ,
b) Explain in detail the different transformations (Pearlitic, I martensitic) of a eutectoid steel with a suitable T-T-T diag	baintic and
13. a) Describe in detail the different strengthening methods for material.	_
(OR)	(16)
 b) Describe in detail the different hardness measurements using Brinell, Knoop and Vickers hardness for a solid material. 14. a) Derive an expression for the Langevin-Debye equation. 	(16)
(OR)	(16)
b) i) Explain in detail the different types of breakdowns in a d	ielectric
ii) Explain in detail the effect of temperature and magnetic	field on the
15. a) Describe in detail the development, properties and application (OR)	s of metallic (16)
b) i) Explain in detail the preparation of nanomaterials by botton ii) What are the different types of carbon nanotubes and stat properties?	n up processes. (12) ce their
	(4)