Reg. No.:		 	 			

Question Paper Code: 80283

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Second Semester

Aeronautical Engineering

PH 8251 — MATERIALS SCIENCE

(Common to Aerospace Engineering/Automobile Engineering/Industrial
Engineering/Industrial Engineering and Management/Manufacturing
Engineering/Marine Engineering/Mechanical Engineering/
Mechanical Engineering (Sandwich)/Mechanical and Automation
Engineering/Mechatronics Engineering/Production Engineering/Robotics and
Automation Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State Hume Rothery rule.
- 2. Define isomorphous system.
- 3. State Fick's first law of diffusion.
- 4. Sketch the temperature time diagram during the heating cycle of a 0.8% C steel. Use standard Fe-Fe3C phase diagram.
- 5. Define creep resistance.
- 6. Name four factors that affect hardening process of steel.
- 7. Calculate the critical current flow through a lead superconducting wire of 1 mm diameter. The critical field is 7.9×10^3 amp/metre.
- 8. Differentiate between dielectric materials and insulators.
- 9. What are composites? Give an example for natural and manmade composites.
- 10. List out any four medical applications of nanomaterials.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) What is a eutectic phase diagram? Draw a typical equilibrium diagram for a eutectic type of system with limited solid solubility and explain its important.

Or

- (b) What is binary phase diagram? Explain in detail about binary isomorphous system and the region present in it.
- 12. (a) Draw TTT diagram for eutectoid steel and explain biantic and martenstic transformation.

Or

- (b) (i) Calculate the amounts and compositions of phases and microconstituents in a Fe-0.60% C alloy at 726°C.
 - (ii) What are the general properties of tool steels?
- 13. (a) What is fracture? Discuss the different types of fracture.

.Oı

- (b) (i) Discuss the strain hardening mechanism in detail.
 - (ii) What is solid solution strengthening? Discuss in detail the various variables affecting it.
- 14. (a) What are ferrites? Explain the structure of ferrites, properties and its applications.

Or

- (b) What is ferroelectricity? Explain the structure and properties of ferroelectric materials.
- 15. (a) Classify the composites based on the matrix phase. Compare them based on their properties and applications.

Dr.

(b) What are nanomaterials? Explain the properties and applications of nanomaterials.