

Question Paper Code: 90500

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019

Second Semester Medical Electronics

PH 8253 - PHYSICS FOR ELECTRONICS ENGINEERING

(Common to Biomedical Engineering/Computer and Communication Engineering/ Electrical and Electronics Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Electronics and Telecommunication Engineering/Instrumentation and Control Engineering) (Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

some all the regarding resources the second of the second program is a second program of the second second

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. State Widemann-Franz law. Give the value of Lorentz number and state whether it holds good for all metals at all temperatures.
- 2. Explain the concept of hole and give its advantages.
- 3. Draw a neat sketch to represent the variation of Fermi level with temperature for various concentrations in P-type semi-conductor.
- 4. Mention any two differences between Zener and avalance breakdown.
- 5. Define magnetic susceptibility and permeability.
- 6. What is meant by high-k-dielectrics? Give examples.
- 7. Why group III and group V elements alone should be chosen for manufacturing LED's?
- 8. What do you understand by quantum confined Stark effect?
- 9. What will happen to the band gap when the volume is reduced from that of a solid to a nanomaterial?
- 10. What is meant by coherent transport and conductance fluctuations?

PART – B

(5×16=80 Marks)

11. a) i) Write Fermi temperature	distribution function. Explain how Fermi function varies w	vith (14)
ii) Evaluate the	e Fermi function for an energy kT above the Fermi energy	
	(OR)	` ,
b) i) Obtain the I three dimens	Eigenvalues and Eigenfunctions of an electron enclosed i sional potential box.	n a (12)
ii) What is mea	nt by degenerate and non-degenerate states?	(4)
density of holes	그 그는 그 그는 것은 이렇게 하는 것이다. 그는 회장에서 그는 경우를 하는 것이 되었다. 그는 것이 없는 것이 없는 것이 없는 것이다.	(16)
b) With a neat ske i) Tunnel diode	etch, describe the principle, working and applications of e.	(
ii) Schottky dio	de.	(8+8)
13. a) Explain ferroma involved in dom	agnetic domain theory. Briefly explain different types of ener	
	(OR) consider a Adjoint as and	
ii) Discuss in det	nt by dielectric breakdown and dielectric strength? tail the various dielectric breakdown mechanisms and menti	
	to avoid breakdown in dielectric material.	(12)
	principle, construction and working of a photo diode. antages, disadvantages and application of photo diode.	(12) (4)
b) i) Describe the Laser.	(OR) principle, construction and working of a GaAlAs dio	de (14)
ii) Calculate the band gap ener of light is 3 ×	wavelength of emission from GaAs semiconductor laser who gy is 1.44eV (Plank's Constant is $6.625 \times 10^{-34} \text{Js}$ and veloci 10^8m/sec.)	se
15. a) Explain the dense dot structure.	sity of states in quantum well, quantum wire and quantu	.m (16)
	(OR)	
b) Write a short noi) GMR	te on:	
ii) Spin Valve.		(8+8)
	· · · · · · · · · · · · · · · · · · ·	