`` }1•

T) >-	T 7		-				100,000			Color of Samuel Samuel
Keg. No. :	1 1	1	l			I	ľ]		
	<u></u>									
				COMMUNICATION OF THE PERSON OF	- Andrews	THE PERSON NAMED IN	PROCESSOR STREET,	Commence of the state of	-	

Question Paper Code: 90346

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019

Fourth Semester Civil Engineering

MA 8491: NUMERICAL METHODS

(Common to Aeronautical Engineering/Civil Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/
Instrumentation and Control Engineering/Mechanical Engineering (Sandwich)
Chemical Engineering/Chemical and Electrochemical Engineering/Plastic
Technology/Polymer Technology/Textile Technology)
(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART -- A

 $(10\times2=20 \text{ Marks})$

- 1. Write the condition for convergence of iteration method.
- 2. Solve 3x + 2y = 4, 2x 3y = 7 by using Gauss Jordan method.
- 3. Prove that $E = 1 + \Delta$.
- 4. Construct the Newton's divided difference table for the following data.

х	0	1	3	4	
у	1	4	40	85	

- 5. Write the Newton's backward interpolation formula to find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at
- 6. State Gaussian two point quadrature formula.
- 7. Using Euler's method, find y(0.1) given that y' = x + y, y(0) = 1.
- 8. Write the Adams-Bashforth predictor -corrector formula.
- 9. Classify $u_{xx} 2u_{xy} + u_{yy} = 0$.
- 10. Write the Bender-Schmidt explicit formula to solve $u_{xx} = au_t$.

(8)

(8)

(8)

PART - B

(5×16=80 Marks)

- 11. a) i) Find the real positive root of $x \log_{10} x = 1.2$ by using Newton-Raphson method correct to four decimal places.
 - ii) Solve the following system of equations by using Gauss-Seidal method. 28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35.

- b) i) Solve the following system of equations by using Gauss-Elimination method: (8) 3x - y + 2z = 12, x + 2y + 3z = 11, 2x - 2y - z = 2.
 - ii) Find the largest eigenvalue and the corresponding eigenvector of the

 $_{-1}$ by using Power method. matrix -1 2

(8)

(8)

(8)

12. a) i) Using Newton's forward interpolation formula, find the polynomial which (8) takes the following values.

x :	0	1	2	3
f(x):	1	2	1	10

ii) Using Lagrange's interpolation formula, find y(10) from the following table.

11

(8)

х:	5	6	9	11	
у:	12	13	14	16	
	The state of the s		/	(A.D.)	

b) Find the cubic spline polynomial to the following data given that $M_0 = M_3 = 0$ and also find y (2.5).

(16)

х	:	0	1	2	3
у	:	1	2	33	244

13. a) i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.1 given that

x :	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y:	7.989	8.403	8.781	9.129	9.451	9.750	10.031

- $\frac{dx}{1+x}$ by using trapezoidal rule with h = 0.125, 0.25, 0.5. Then use Romberg's method to obtain its value. Hence, evaluate log_e2 correct to
 - 3 decimal places.

(8)

(OR)

- b) i) Evaluate $\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{x+y} dx dy$ by using Simpson's rule taking 2 sub intervals in each direction.
 - (8) ii) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Gaussian three-point quadrature.
- 14. a) i) Find the value of y at x = 0.1 and x = 0.2 given that $y' = x^2y 1$, y(0) = 1(8) using Taylor's series method.
 - ii) Find y (0.8) given that $y' = y x^2$, y (0.6) = 1.7379 using fourth order R-K (8) method correct to 4 decimal places.

(OR)

- b) i) Compute y at x = 0.1, 0.2 given that $\frac{dy}{dx} = x + y^2$, y (0) = 1 using modified (8) Euler's method.
 - ii) Find y (0.4) given that $y' = xy + y^2$, y(0) = 1, y(0.1) = 1.1167, y(0.2) = 1.2767, y(0.3) = 1.5023 by using Milne's predictor corrector method.
- 15. a) i) Solve y'' y = x, $x \in (0, 1)$ given y(0) = y(1) = 0 by dividing the interval into 4 equal parts using finite difference method.
 - ii) Using Crank-Nicholson's difference scheme, solve $u_{xx} = 16 u_t$, 0 < x < 1, t > 0 given u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100 t. Compute u(0, t) = 0(8) time step by taking h = 1/4.

b) Solve $u_{xx} + u_{yy} = 0$ whose boundary values are as shown in the following (16)figure.

