ļ		Ш			
1		Ш	Ш		Ш

Reg. No.:		11 1110					ľ	, ,	
	ı I			1 3		i :	1		1 1

Question Paper Code: 90348

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019
Fifth Semester

Information Technology

MA 8551 – ALGEBRA AND NUMBER THEORY

(Common to Computer Science and Engineering/Computer and Communication Engineering)

(Regulations 2017)

Time: Three Hours

 $(\)$

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Define a subgroup and give one proper subgroup of $(Z_{\mathfrak{g}}, +)$.
- 2. Give an example for a cyclic group along with its generator.
- 3. Find all the roots of $f(x) = x^2 + 4x$ in $Z_{12}[x]$.
- 4. Give an example for an irreducible and reducible polynomial in $\mathbf{Z}_{g}[\mathbf{x}]$.
- 5. Find the number of positive integer's ≤ 3076 and not divisible by 17.
- 6. Using the canonical decomposition of 1050 and 2574, find their lom.
- 7. Determine whether the LDE 2x + 3y + 4z = 5 is solvable.
- 8. What is the remainder when 3^{81} is divided by 7?
- 9. State Fermat's little theorem.
- 10. If $n = 2^k$, then show that the value of Euler's phi function $\phi(n) = n/2$.

PART = B

(5×10=80 Marks)

- 11. a) i) Let G be the set of all rigid motions of a equilateral triangle. Identify the elements of G. Show that it is a non-abelian group of order 6.
 - ii) Let G be a group with subgroups H and K. If |G| = 660, |K| = 66 and $K \in H \in G$, what are the possible values for |H|? (6+8)
 - b) i) Prove that (Q, \oplus, o) is a ring on the set of rational numbers under the binary operations $x \oplus y = x + y + 7$, $x \circ y = x + y + (xy/7)$ for $x, y \in Q$.
 - ii) Find $[100]^{-1}$ in Z_{1000} . (8+8)

n = 1980.

(18)

12. a) i) If $f(x) \in F[x]$ has degree $n \ge 1$, then prove that f(x) has at most n roots in F. ii) Find the gcd of $x^{10} - x^7 - x^5 + x^3 + x^2 - 1$ and $x^8 - x^5 - x^3 + 1$ in Q[x]. (8+8)b) Prove that a finite field F has order p^t , where p is a prime and $t \in Z^t$. (16)13, a) i) Prove that there are infinitely many primes. ii) Prove that the gcd of the positive integers a and b is a linear combination of (8+8)a and b. (OR) b) i) Apply Euclidean algorithm to express the gcd of 1976 and 1776 as a linear combination of themselves. ii) Prove that the product of gcd and lcm of any two positive integers a and b is (8+8)equal to their products. 14. a) i) Find the general solution of the LDE 15x + 21y = 39. (8+8)ii) Solve the linear system. $5x + 6y \equiv 10 \pmod{13}$ $6x - 7y \equiv 2 \pmod{13}$ (OR) b) State and prove Chinese Remainder Theorem. Using it find the least positive integer that leaves the remainder 1 when divided by 3, 2 when divided by 4 and 3 (16)when divided by 5. 15. a) i) State and prove Wilson's theorem. ii) Using Euler's theorem find the remainder when 2451040 is divided by 18. (8+8) (OR) b) Let n be a positive integer with canonical decomposition $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$. Derive

the formulae for Tau and Sigma functions. Hence evaluate $\tau(n)$ and $\sigma(n)$ for