					ý.
				~	
28					

12/06/23-FN.

TO . AT	.,	
Reg. No.:		

Question Paper Code: 30240

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Third Semester

Aeronautical Engineering

MA 3351 — TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Aerospace Engineering/Automobile Engineering/Biomedical
Engineering/Civil Engineering/Manufacturing Engineering/Marine
Engineering/Materials Science and Engineering/Mechanical Engineering/
Mechanical Engineering (Sandwich)/ Mechanical and Automation
Engineering/Mechatronics Engineering/Medical Electronics/Petrochemical
Engineering/Production Engineering/Robotics and Automation/Safety and Fire
Engineering/Bio Technology/Biotechnology and Biochemical Engineering/Food
Technology/Petrochemical Technology/Petroleum Engineering/Pharmaceutical
Technology)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Form the PDE by eliminating the arbitrary constants 'a and b' from the relation z = (x + a) (y + b).
- 2. Find the PDE corresponding to the complementary function $z = f_1(y+x) + x f_2(y+x) + f_3(y-x) + x f_4(y-x)$.
- 3. If f(x) is defined in $(-\pi, \pi)$ and if f(x) = x + 1 in $(0, \pi)$, then find f(x) in $(-\pi, 0)$ if
 - (a) f(x) is odd
 - (b) f(x) is even.
- 4. Determine the value of b_{25} while expanding the function

$$f(x) = \begin{cases} 1 + \frac{2x}{l}; & -l \le x \le 0 \\ 1 - \frac{2x}{l}; & 0 \le x \le l \end{cases}$$
 as a Fourier series.

- 5. A tightly stretched string of length '2L' is fastened at both ends. The midpoint of the string is displaced to a distance 'b' and released from rest in this position. Write the boundary conditions.
- 6. The ends A and B of a rod 100 cm long, have their temperatures kept at 10°C and 100°C respectively. Then find the steady state temperature distribution function.
- 7. Obtain the Fourier transform of $f(x) = \begin{cases} 1; & \text{for } |x| \le 1 \\ 0; & \text{for } |x| > 1. \end{cases}$
- 8. State Convolution theorem for Fourier transforms.
- 9. Find the inverse Z transform of the unit impulse sequence $\delta(n) = \begin{cases} 1; & \text{for } n = 0 \\ 0; & \text{for } n \neq 0. \end{cases}$
- 10. State Initial value theorem in Z transforms.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Solve:
$$(x-2z)p + (2z-y)q = y-x$$
 (8)

(ii) Solve:
$$(D^2 + DD' - 6D'^2)z = \cos(2x + y)$$
. (8)

Or

- (b) (i) Solve: $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that when x = 0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. (8)
 - (ii) Obtain the general solution of $(D^2 2DD' + D'^2)z = \sin x$. (8)
- 12. (a) Obtain the Fourier series expansion of $f(x) = 2x x^2$ in the interval 0 < x < 3.

Or

(b) The displacement y of a part of a mechanism is tabulated with corresponding angular movement x° of the crank. Express y as a Fourier series neglecting the harmonics above the third. (16)

x°: 0 30 60 90 120 150 180 210 240 270 300 330

y: 1.80 1.10 0.30 0.16 1.50 1.30 2.16 1.25 1.30 1.52 1.76 2.00

13. (a) A tightly stretched string of length l is fastened at both ends. Initially in equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \left(\frac{\pi x}{l}\right)$. Find the displacement y at any distance x from one end at any time t.

Or

- (b) A bar with 100 cm long, with insulated sides, has its ends kept at 0°C and 100°C respectively until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Then, find the temperature distribution function. (16)
- 14. (a) (i) Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1 x^2, & \text{for } |x| \le 1 \\ 0, & \text{for } |x| > 1. \end{cases}$ Hence evaluate $\int_{0}^{\infty} \frac{x \cos x \sin x}{x^3} \cos\left(\frac{x}{2}\right) dx. \tag{10}$
 - (ii) If F(s) is the complex Fourier transform of f(x), then prove that $F\{f(x-a)\}=e^{isa}F(s)$.

Or

- (b) Find the Fourier transform of $f(x) = e^{-a^2x^2}$, a > 0. Hence deduce that $e^{\frac{-x^2}{2}}$ is self reciprocal in respect of Fourier transform. (16)
- 15. (a) Using Z transform, solve the difference equation $u_{n+2}-2\,u_{n+1}+u_n=3\,n+5\,.$ (16)

Or

(b) State and prove the convolution theorem in Z transforms and apply it to find $Z^{-1} \left\{ \frac{z^2}{(z-2)(z-3)} \right\}$. (16)