Reg. No.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Question Paper Code : 51852

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016<br>Fourth Semester<br>Mechanical Engineering

ME 2254/ME 45/CE 1259/10122 ME 405/080120018 - STRENGTH OF MATERIALS
(Common to Production Engineering and Automobile Engineering)
(Regulations 2008/2010)
(Common to PTME 2254/10122 ME 405 - Strength the Materials for B.E. (Part-Time) Third Semester, Mechanical Engineering, Regulations 2009/2010)

Time : Three Hours

Maximum : 100 Marks

$$
\begin{gathered}
\text { Answer ALL questions. } \\
\text { PART - A }(10 \times 2=20 \text { Marks })
\end{gathered}
$$

1. What are the types of elastic constants.
2. Give the relation for change in length of a bar hanging freely under its own weight.
3. What is meant by Hogging bending moment ?
4. Write any two uses of a Flitched beam.
5. Define the theory of pure torsion.
6. Explain the term Torsional resilience
7. A horizontal cantilever of uniform section and length "L" carries two vertical point loads " $W_{1}$ " and " $W_{2}$ ". " $W_{1}$ " acts upwards at the free end and " $W_{2}$ " acts downwards at a distance from the fixed end. Find the deflection at the free end.
8. Give the equivalent length of a column for any two end conditions.
9. A riveted boiler is made out of 20 mm thick plates, to a diameter of 2 m . If the efficiency of the longitudinal and circumferential joints be $75 \%$ and $60 \%$. Find the safe pressure in the boiler if the maximum tensile stress on the plate section through rivets may not exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the longitudinal stress on the section through the rivets.
10. What is the radius of Mohr's circle?

$$
\text { PART }- \text { B }(5 \times 16=80 \text { marks })
$$

11. (a) A compound bar consists of a central steel strip 25 mm wide and 6.40 mm thick, placed between two strips of brass each 25 mm wide and " t " mm thick. The strips are firmly fixed together to form a compound bar of rectangular section 25 mm wide and $(2 \mathrm{t}+6.4) \mathrm{mm}$ thick.

Determine,
(i) the thickness of the brass strips which will make the apparent modulus of elasticity of compound bar $1.57 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(ii) the maximum axial pull the bar can then carry if the stress is not to exceed $157 \mathrm{~N} / \mathrm{mm}^{2}$, in either the brass or the steel. Take the values of $\mathrm{E}_{\text {steel }}=2.07$ $\times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\text {brass }}=1.14 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

## OR

(b) A 10 mm diameter mild steel bar of length 1.50 m is stressed by a weight of 120 N dropping freely through 20 mm before commencing to stretch bar. Find the maximum instantaneous stress and the elongation produced in the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
12. (a) $A$ beam $A B$ of length 7 m is simply supported at two supports which are 5 m apart with an overhang of 2 m on the right side of the beam as shown in fig. The beam carries a UVL of $6 \mathrm{KN} / \mathrm{m}$ over the entire length of SSB and a concentrated load of 4 KN at the right end of the beam. Draw SFD and BMD and locate maximum BM.


## OR

(b) A I section beam $350 \mathrm{~mm} \times 200 \mathrm{~mm}$ has a web thickness of $12: 5 \mathrm{~mm}$ and a flange thickness of 25 mm .lt carries a shearing force of 20 tonnes at a section. Sketch the shear stress distribution across the section.
13. (a) A.solid alloy shaft 50 mm diameter is to be coupled in series with a hollow steel shaft of the same external diameter. Find the internal diameter of the steel shaft if the angle of twist per unit length of steel shaft is to be $75 \%$ of that of the alloy shaft. Determine the speed at which the shafts are to be driven to transmit 18.75 kW , if the limits of shearing stress are to be $56 \mathrm{~N} / \mathrm{mm}^{2}$ and $80 \mathrm{~N} / \mathrm{mm}^{2}$ in alloy and steel respectively. Take $\mathrm{C}_{\text {STEEL }}=2.2 \mathrm{C}_{\text {ALLOY }}$.

## OR

(b) A close coiled helical spring has a stiffness of $10 \mathrm{~N} / \mathrm{mm}$ its length when fully compressed, with adjacent coils touching each other is 400 mm . The modulus of rigidity of the material of the spring is $8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
(i) Determine the wire diameter and the mean coil diameter if their ratio $=1 / 10$
(ii) If the gap between any two adjacent coils is 2 mm , what maximum load can be applied before the spring becomes solid.,i.e.,adjacent coils touch?
(iii) What is the corresponding maximum shear stress in the spring ?
14. (a) A cantilever of length "I" carries a concentrated load "W" at its midspan. If the free end be supported on a rigid propped, find the maximum deflection.

## OR

(b) A cantilever beam 4 m long carries a load of 50 KN at a distance of 2 m from the free end, and a load of "W" at the free end. If the deflection at the free end is 25 mm . Calculate the magnitude of the load "W", and the slope at the free end. Take $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}, 1=5 \times 10^{7} \mathrm{~mm}^{4}$.
15. (a) A cylindrical shell 1 metre long, 180 mm internal diameter, thickness of metal 8 mm is filled with a fluid at atmospheric pressure. If an additional $20000 \mathrm{~mm}^{3}$ of the fluid is pumped into the cylinder. Find the pressure exerted by the fluid on the wall of the cylinder. Find also the hoop stress induced. Take $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.3$.

## OR

(b) A rectangular block of material is subjected to a tensile stress of 100 MPa and a compressive stress of 50 MPa on the plane at right angles to the former. Each of the above stresses is accompanied by a shear stress of 60 MPa and that associated with former tensile stress tends to rotate the block anticlockwise. Find the principal stresses and principal planes and the maximum shear stress.

