Reg. No. : \square

Question Paper Code : 27104

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester

Civil Engineering

CE 6402 - STRENGTH OF MATERIALS

(Common to Fourth Semester Petrochemical Engineering and Third Semester Plastic Technology and Polymer Technology)
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Define strain energy.
2. Write the expression for strain energy due to shear.
3. Define degrees of freedom.
4. Define bending moment diagram.
5. What is equivalent length of a column?
6. Define slenderness ratio.
7. Define the term obliquity.
8. Define principal plane.
9. Define shear centre.
10. Distinguish between curved beam and a straight beam.
11. (a) A tension bar 6 m long is made up of two parts, 3 metre of its length has a cross-sectional area of $100 \mathrm{~mm}^{2}$ while the remaining 3 metre has a cross-sectional area of $200 \mathrm{~mm}^{2}$. An axial load of 100 kN is gradually applied. Find the total strain energy produced in the bar and compare this value with that obtained in a uniform bar of the same length and having the same volume when under the same load. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Or

(b) Determine mid span deflection and end slopes of a simply supported beam of span 'L' carrying a uniformly distributed load 'w' per unit length.
12. (a) A fixed beam AB of length 6 m carries point loads of 150 kN and 120 kN at a distance of 2 m and 4 m from the left end A. Find the fixed end moments and the reactions at the supports. Draw bending moment and shear force diagrams.

Or

(b) A continuous beam ABC covers two consecutive span AB and BC of lengths of 4 m and 6 m , carrying uniformly distributed loads of $6 \mathrm{kN} / \mathrm{m}$ and $8 \mathrm{kN} / \mathrm{m}$ respectively. If the ends A and C are simply supported find the support moments at A, B and C. Draw also bending moment and shear force diagrams.
13. (a) A hollow cylindrical cast iron column is 4 m long with both ends fixed. Determine the minimum diameter of the column if it has to carry a safe load of 250 kN with a factor of safety of 5 . Take the internal diameter as 0.8 times the external diameter. Take $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=\frac{1}{1600}$ in Rankine's formula.

Or

(b) Determine the maximum and minimum hoop stress across the section of a pipe of 500 mm internal diameter and 100 mm thick, when the pipe contains of fluid, at a pressure of $10 \mathrm{~N} / \mathrm{mm}^{2}$.
14. (a) Direct stresses of $120 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and $80 \mathrm{~N} / \mathrm{mm}^{2}$ compression exist on two perpendicular planes at a certain point in a body. They are also accompanied by shear stress on the planes. The greatest principal stress at the point due to these is $160 \mathrm{~N} / \mathrm{mm}^{2}$.
(i) What must be the magnitude of the shearing stresses on the two planes?
(ii) What will be the maximum shearing stress at the point?

Or

(b) Find the diameter of a shaft according to the distorsion energy theory if the shaft is subjected to a maximum torque of 12 KNm and a maximum bending moment of 10 KNm at a particular section. Take allowable equivalent stress in simple tension as $180 \mathrm{MN} / \mathrm{m}^{2}$.
15. (a) A beam of rectangular section, 80 mm wide and 120 mm deep is subjected to a bending moment of $10 \mathrm{kN}-\mathrm{m}$. The trace of the plane of loading is inclined at 45° to the Y-Y axis of the section. Locate the neutral axis of the section and calculate the maximum bending stress induced in the section.

Or

(b) A curved beam, rectangular in cross-section is subjected to pure bending with couple of $+400 \mathrm{~N}-\mathrm{m}$. The beam has width of 20 mm , and depth of 40 mm and is curved in a plane parallel to the depth. The mean radius of curvature is 5 mm . Find the position of the neutral axis, and the ratio of the maximum to the minimum stress. Also, plot the variation of the bending stress across the section.

