Reg. No. \square

Question Paper Code : 60249

B.E./B.Těch. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester
Civil Engineering

CE 2252/CE 43/080100019/10111 CE 403 — STRENGTH OF MATERIALS
(Regulations 2008/2010)
(Common to 10111 CE 403 - Strength of Materials for B.E. (Part - Time) Second Semester - Civil Engineering - Regulations 2010)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Define principle of virtual work.
2. State the Maxwell's reciprocal theorem
3. What is the value of prop reaction in a propped cantilever of span ' L ', when it subjected to a U.D.L over the entire length?
4. What are the advantages and limitations of the theorem of three moments?
5. Define slenderness ratio of a column.
6. State any four assumptions made in Lame's theory.
7. Define 'stress tensor'.
8. What is principal strain?
9. Explain briefly about stress concentration.
10. What is meant by fatigue?

PART B - ($5 \times 16=80$ marks $)$
11. (a) Using castigliano's first theorem, calculate the central deflection, and the slope at end of a simply supported beam carrying a UDL of intensity W per unit length over the whole span.

Or
(b) A beam Simply supported over a span of 3.5 m carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ over the entire span. Taking $\mathrm{EI}=2.5 \mathrm{MNm}^{2}$ and using Castigliano's theorem, determine the deflection at the center of the beam.
12. (a) A cantilever of length L carries a concentrated load W at the mid-span if the free end is supported on a rigid Prop, find the reaction at the prop. Also draw shear force and bending moment diagrams.

Or

(b) A beam ABCD 16 m long is continuous over three spans: $\mathrm{AB}=6 \mathrm{~m}$, $\mathrm{BC}=5 \mathrm{~m}$ and $\mathrm{CD}=5 \mathrm{~m}$, the supports being at the same level. There is a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ over BC . On AB , there is a point load of 80 kN at 2 m from A . On CD there is a point load of 60 kN at 3 m from D. Calculate the moments and reactions at the supports using theorem of three moments.
13. (a) State the Euler's assumption in column theory. And derive a relation for the Euler's cripping load for a columns with both ends hinged.

Or
(b) A short length of tube having internal diameter and external diameter are 4 cm and 5 cm respectively, which failed in compression at a load of 250 KN . When a 1.8 m length of the same tube was tested as a strut with fixed ends, the load failure was 160 kN . Assuming that σ_{c} in Rankine's formula is given by the first test, find the value of constant α in the same formula. What will be the crippling load of this tube if it is used as a strut 2.8 m long with one end fixed and the other hinged?
14. (a) The state of stress (Cartesian components of stress) at a point are:
$\sigma_{x x}=7 \mathrm{Mpa}, \sigma_{y y}=6 \mathrm{Mpa}, \sigma_{z z}=5 \mathrm{Mpa}, \zeta_{x y}=2 \mathrm{Mpa}, \zeta_{y z}=-2 \mathrm{Mpa}$, $\zeta_{x z}=0 \mathrm{Mpa}$. Determine the values of Principal Stresses.

Or

(b) A cylindrical shaft made of steel of yield strength 350 MPa is subjected to static load consisting of bending moment of $10 \mathrm{kN}-\mathrm{m}$ and a torsional moment of $30 \mathrm{kN}-\mathrm{m}$. Determine the diameter of the shaft using
(i) Maximum principal stress theory,
(ii) Maximum shear stress theory
(iii) Maximum Strain energy theory and
(iv) Maximum distortion energy theory. Take $E=210 \mathrm{GPa}$, Poisson's ratio $=0.25$ and factor of safety $=2$.
15. (a) A $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ angle as shown in fig. Q 15 (a) having $I_{X X}=I_{Y Y}=87.36 \times 10^{-8} \mathrm{~m}^{4}$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical Plane $Y Y$, the mid section of the beam deflects in the direction $A A^{\prime}$ at $30^{\circ} 15^{\prime}$ to the vertical.
(i) Calculate the second moment of area of the section about its principal axis.
(ii) What is the bending stress at the corner B if the bending moment is $1.5 \mathrm{kN}-\mathrm{m}$?

Figure - Q. 15 (a)
Or
(b) A ring as shown in fig. Q. 15 (b) is carrying a load of 30 kN . Calculate the stresses at 1 and 2.
(16)

Figure - Q. 15 (b)

