

Reg. No.:						
				L		

Question Paper Code: 40790

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Third/Fourth Semester Mechanical Engineering CE 6451 – FLUID MECHANICS AND MACHINERY

(Common to Aeronautical Engineering/Automobile Engineering/Industrial Engineering/Industrial Engineering and Management/Manufacturing Engineering/Mechanical and Automation Engineering/Mechatronics Engineering/

B.E. Production Engineering) (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. What are compressible and incompressible fluids?
- 2. Draw the shear stress-velocity gradient profile for Non Newtonian fluids.
- 3. When a tube is said to be hydraulically smooth?
- 4. Define equivalent diameter of a non circular tube.
- 5. What is dimensional homogeneity?
- 6. List the methods of dimensional analysis.
- 7. What is suction head of a pump?
- 8. Define mechanical efficiency of a pump.
- 9. How are hydraulic turbines classified?
- 10. Define hydraulic efficiency of a turbine.

PART - B

 $(5\times13=65 \text{ Marks})$

11. a) Explain the various properties of fluids.

(OR)

- b) Explain the various classification of fluids with the help of a stress-strain graph.
- An old water supply distribution pipe of 250 mm diameter of a city is to be replaced by two parallel pipes of smaller equal diameter having equal lengths and identical friction factor values. Find out the new diameter required.

- b) A pipeline of length 2000 m is used for power transmission. If 110.3625 kW power is to be transmitted through the pipe in which water having a pressure of 490.5 N/cm² at inlet is flowing. Find the diameter of the pipe and efficiency of transmission if the pressure drop over the length of the pipe is 98.1 N/cm².
- The pressure difference $\Delta\,p$ in a pipe of diameter D and length l due to turbulent 13. a) flow depends on the velocity V, viscosity μ , density ρ and roughness k. Using Buckingham's π theorem, obtain an expression for Δp .

- Explain the various types of similarities between model and prototype. b)
- The internal and external diameters of the impeller of a centrifugal pump are 14. a) 200 mm and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impleller per unit weight of water.

(OR)

- Explain the following: b)
 - i) Manometric efficiency.
 - ii) Mechanical efficiency.
 - iii) Overall efficiency.

Explain the parts of Pelton wheel. 15. a)

A pelton wheel is supplied with water under a head of 35 m at the rate of 40.5 kl/min. the bucket deflects the jet through an angle of 160° and the mean bucket speed is 13 m/s. Calculate the power and hydraulic efficiency of the

PART - C

(1×15=15 Marks)

16. a) Derive the Euler's equation of motion.

b) Derive the work done by the centrifugal pump on water.