Reg. No. : \square

R 3449

HEATrM DEGREF EXAMINATION, NOVEMBER/DECEMBER 2007.
Third Semester
(Regulation 2004)
Mechanical Engineering
ME: 1201 - ENGINEERING THERMODYNAMICS

Refrigerant property tab 8 bermitted)

PART A $-2=20$ marks)

1. What is a PMM1? Why is Mipossible?
2. Is it correct to say 'tatal heat' or 'heat content' of a closed system?
3. Why the secon 1 of thermodynamics is called a directional law of nature?
4. The coefticien of Performance (COP) of a heat pump is 5. Find the COP of a refrigerator if both are reversible devices interacting between same source temperature and sink temperature.
5. Define saturation state of a system.
6. Why Carnot cycle is not practicable for a steam power plant?
7. What do you mean by equation of state?
8. State the Dalton's law of partial pressure.
9. Define dew point temperature
10. What is sensible heating?
11. (a) (i) A blower handles $1 \mathrm{~kg} / \mathrm{sec}$ of air at 293 K and consumes a pow 15 kW . The inlet and outlet velocities of air are $100 \mathrm{~m} / \mathrm{sec}$ $150 \mathrm{~m} / \mathrm{sec}$ respectively. Find the exit air temperature, assun adiabatic conditions. Take Cp of air as $1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
(ii) A room for four persons has two fans, each consuming 0.18 power and three 100 W lamps. Ventilation air at the rat $0.0222 \mathrm{~kg} / \mathrm{sec}$ enters with an enthalpy of $84 \mathrm{~kJ} / \mathrm{kg}$ and leaves an enthalpy of $59 \mathrm{k} . T / \mathrm{kg}$. If each person puts out heat at the rat $0.175 \mathrm{~kJ} / \mathrm{sec}$, detcimine the rate at which heat is to be removed room corier, so that a steady state is naintained in the room.

$$
\therefore \mathrm{Or}
$$

(b) (i) One litre of hydrogen at 273 K is adiabatically compressed to half of its initial volume. Find the change in tomperature of the if the ratio of two specific heats for hydrogs
(ii) The velocity and enthalpy of fluid at theinlet of a certain nozzle $50 \mathrm{~m} / \mathrm{sec}$ and $2800 \mathrm{~kJ} / \mathrm{kg}$ respectively The enthalpy at the ex nozzle is $2600 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is norizontal and insulated so no heat transfer takes plăceufrit. Find
(1) Velocity of the fluidquit of the nozzle
(2) Mass flow ratp in area at inlet of nozzle is $0.09 \mathrm{~m}^{2}$
(3) Exitartad othe nozzle, if the specific volume at the exit of nozzin $0.495 \mathrm{~m}^{3} / \mathrm{kg}$.
12. (a) (i) Giva Clausius statement of second law.
(ii) house hold refrigerator is maintained at a temperature of 27 Every time the door is opened, warm material is placed in s introducing an average of 420 kJ , but making only a small cho in the temperature of the refrigerator. The door is opened 20 ti a day, and the refrigerator operates at 15% of the ideal COP. cost of work is Rs 2.50 per kWhr . What is the bill for the mont April for this refrigerator? The atmosphere is nt 303 K .

> Or
(b) (i) What is a thermal energy reservoir?
(ii) Establish the inequality of Clausius.
13. (a) A cyche steam power plant is to be designed for a steam temperature at turbine inlet of 633 K and an exhaust pressure of 8 kPa . After isentropic expansion of steam in the turbine, the moisture content at the turbine exhaust is not to exceed 15%. Determine the greatest allowable steam pressure at the turbine inlet, and calculate the Rankine cycle efficiency for these steam conditions. Estimate also the mean temperature of heat addition.

> Or
(b) In a reheat steam cycle, the maximum steam temperature is limited to 773 K . The condenser pressure is 10 kPa and the quality at turbine exhaust is 0.8778 . Had there been no reheat, the exhaust quality would have been 0.7592 . Assuming ideal processes, determine (i) reheat presure (ii) the boiler pressure (iii) the cycle efficiency (iv) the steam rate.
14. (a) (i) A certain gas has $c_{p}=0.913$ and $c_{v}=0.653 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Find the molecular weight and the specific gas constant Ros the gas.
(ii). Derive the Clausius- Clapreyon equation.
(b) (i) Derive Maxwell's equations.
(ii) Prove $T d s=C_{V} d T+T(\partial p / \partial \hat{V}) V V$
15. (a) In a laboratory test, a sling sycher recorded dry bulb and wet bulb temperatures as 303 K ard 298 K respectively. Calculate (i) vapour pressure (ii) relat: $\mathrm{n}_{\text {d }}$ ridity (iii) specific numidity (iv) degree of saturation (v) deweremperature (vi) enthaipy of the mixture.

Ot
(b) (i) 1 kg air at 313 K dry bulb temperature and 50% relative hadidity is mixed with 2 kg of air at 293 K dry bulb temperature and 293 K dew point temperature. Calculate the temperature and specific humidity of the mixture.
(ii) Show the following processes on a skeleton psychrometric chart
(1) dehumidification and cooling
(2) heating and humidification

