ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
 B.E. / B.TECH DEGREE EXAMINATIONS: NOV / DEC 2010
 REGULATIONS : 2008
 THIRD SEMESTER
 080190005 - ENGINEERING THERMODYNAMICS (COMMON TO AUTOMOBILE / MECHANICAL ENGG.)

TIME: 3 Hours

PART - A

ANSWER ALL QUESTIONS

1. What is meant by internal energy?
2. Define 'Available energy'
3. What do you understand by a reversible process?
4. What are the two major conclusions deduced from the Carnot principles?
5. Define triple point and identify the triple point of water.
6. Steam in a pipeline with a pressure of 1000 kPa flows through a throttling calorimeter where pressure is 100 kPa and temperature is $120^{\circ} \mathrm{C}$. What is the initial quality of steam if enthalpy remains constant during throttling?
7. What is equation of state? Write the same for an ideal gas
8. What is compressibility factor?
9. What is specific humidity?
10. What is meant by adiabatic saturation temperature?
11. What is the convention of positive and negative work?
12. What are the corollaries of the first law of Thermodynamics?
13. Given Kelvin-Planck statement of the second Law of Thermodynamics.

14, What are the processes involved in a Carnot cycle. Sketch the same in P-V diagram
15. Define saturation pressure and temperature.
16. Sketch the Rankine cycle on a P-V and T-S plane.
17. What is pure substance?
18. Define Dalton's law.
19. What is a PMMI? Why is it impossible?
20. Define the term "Adiabatic mixing".

PART - B

ANSWER ANY FIVE QUESTIONS

21. (a) Describe in brief the steady flow energy equation with the assumptions made. (8)
(b) Deduce suitable expression for water turbine with suitable assumptions.
22. A reversible heat engine operates between two reservoirs at temperatures $700^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of $50^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The heat transfer to the engine is 2500 kJ and the network output of the combined engine refrigerator plant is 400 kJ . Determine the heat transferred to the refrigerant and the net heat transferred to the reservoir at $50^{\circ} \mathrm{C}$
23. In an air compressor, air flows steadily at the rate of $0.5 \mathrm{~kg} / \mathrm{s}$ through an air compressor. It enters the compressor at $6 \mathrm{~m} / \mathrm{s}$ with a pressure of 1 bar and a specific volume of $0.85 \mathrm{~m}^{3} / \mathrm{kg}$ and leaves at $5 \mathrm{~m} / \mathrm{s}$ with a pressure of 7 bar and a specific volume of $0.16 \mathrm{~m}^{3} / \mathrm{kg}$. The internal energy of the air leaving is $90 \mathrm{~kJ} / \mathrm{kg}$ greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at the rate of $60 \mathrm{~kJ} / \mathrm{s}$. Calculate :
(i) The power required to drive the compressor ;
(ii) The cross-sectional areas of inlet and output pipes.
24. In a steam turbine, steam at 20 bar, $360^{\circ} \mathrm{C}$ is expanded to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assuming ideal processes, determine per kg of steam the net work and the cycle efficiency
25. A steam turbine is fed with steam having an enthalpy of $3100 \mathrm{~kJ} / \mathrm{kg}$. It moves out of the turbine with an enthalpy of $2100 \mathrm{~kJ} / \mathrm{kg}$. Feed heating is done at a pressure of 3.2 bar with steam enthalpy of $2500 \mathrm{~kJ} / \mathrm{kg}$. The condensate from a condenser with an enthalpy of $125 \mathrm{~kJ} / \mathrm{kg}$ enters into the feed heater. The quantity of bled steam is 11200 kg / h. Find the power developed by the turbine. Assume that the water leaving the feed heater is saturated liquid at 3.2 bar and the heater is direct mixing type. Neglect pump work.
26. The sling psychrometer in a laboratory test recorded the following readings

Dry bulb temperature $=35^{\circ} \mathrm{C}$
Wet bulb temperature $=25^{\circ} \mathrm{C}$
Calculate the following : (i) Specific humidity (ii) Relative humidity (iii) Vapour density in air (iv) Dew point temperature
Take atmospheric pressure $=1.0132$ bar
27. (a) A vessel of $6 \mathrm{~m}^{3}$ capacity contains two gases A and B in proportion of 45 per cent and 55 per cent respectively at $30^{\circ} \mathrm{C}$. If the value of R for the gases is $0.288 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $0.295 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and if the total weight of the mixture is 2 kg , calculate: (i) The partial pressure ; (ii) The total pressure ; (iii) The mean value of R for the mixture. (8)
(b) What is PMM2? Explain with neat sketch.
(4)
28. (a). A system at 500 K receives $7200 \mathrm{~kJ} / \mathrm{min}$ from a source at 1000 K . The temperature of atmosphere is 300 K . Assuming that the temperatures of system and source remain constant during heat transfer find out: (i) The entropy produced during heat transfer; (ii) The decrease in available energy after heat transfer.
(b). Deduce the expression for the displacement work in an isothermal process.
(4)

*******THE END*******

