\square

Question Paper Code : 91631

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Third Semester

Mechanical Engineering

ME 2202/ME 33/ME 1201/080190005/10122 ME 303/AT 2203/ AT 36/10122 AU 302 - ENGINEERING THERMODYNAMICS
(Common to Automobile Engineering)
(Regulations 2008/2010)
(Common to PTME 2202/10122 ME 303 Engineering Thermodynamics for B.E. (Part-Time) Third Semester Mechanical Engineering - Regulation 2009/2010)

Time : Three hours Maximum : 100 marks
(Use of approved thermodynamics tables, Mollier diagram, Psychometric chart and Refrigerant property tables permitted in the Examination)

Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. What is zeroth law of thermodynamics?
2. Compare heat transfer with work transfer.
3. State Kelvin Planck's statement.
4. What is the entropy principle?
5. What is flow and non-flow process?
6. Write the methods for improving the performance of the Rankine cycle.
7. What are the properties of ideal gas?
8. State the Vander Waal's equation of state.
9. What is adiabatic evaporative cooling?
10. What is the use of sling psychrometer?

PART B $-(5 \times 16=80$ marks $)$
11. (a) (i) Derive an expression for the work transfer, heat transfer and change in internal energy for an isobaric and isochoric process. (8)
(ii) Define enthalpy. How is it related to internal energy?

Or
(b) Air at a temperature of $15^{\circ} \mathrm{C}$ passes through a heat exchanger at a velocity of $30 \mathrm{~m} / \mathrm{s}$ where its temperature is raised to $800^{\circ} \mathrm{C}$. It then enters a turbine with the same velocity of $30 \mathrm{~m} / \mathrm{s}$ and expands until the temperature falls to $650^{\circ} \mathrm{C}$. On leaving the turbine, the air is taken at a velocity of $60 \mathrm{~m} / \mathrm{s}$ to a nozzle where its expands until the temperature has fallen to $500^{\circ} \mathrm{C}$. If the air flow rate is $2 \mathrm{~kg} / \mathrm{s}$, calculate (i) the rate of heat transfer to the air in the heat exchanger, (ii) the power output from the turbine assuming no heat loss, and (iii) the velocity at exit from nozzle, assuming no heat loss. Take the entropy of air as $h=c_{p} t$, where c_{p} is the specific heat equal to $1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and t the temperature.
12. (a) (i) State and prove Clausius inequality.
(ii) A reversible heat engine operates between two reservoirs at temperature of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperature of $40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. The heat transfer to the heat engine is 2000 kJ and the network output of the combined engine refrigerator plant is 360 kJ . (1) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$. (2) Reconsider (1) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible values.

Or
(b) (i) Briefly discuss about the concept of entropy.
(ii) Liquid water of mass 10 kg and temperature $20^{\circ} \mathrm{C}$ is mixed with 2 kg of ice at $-5^{\circ} \mathrm{C}$ till equilibrium is reached at 1 atm pressure. Find the entropy change of the system. Given : C_{p} of ice $=$ $2.09 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and latent heat of ice $=334 \mathrm{~kJ} / \mathrm{kg}$.
13. (a) A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquid present is 9 kg . Find the pressure, the mass, the specific volume, the enthalpy, the entropy and internal energy.

Or
(b) Steam at $20 \mathrm{bar}, 360^{\circ} \mathrm{C}$ is expanded in a steam turbine to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. (i) Assuming ideal process, find per kg of steam the network and the cycle efficiency. (ii) If the turbine and the pump have each 80% efficiency, find the percentage reduction in the network and cycle efficiency.
14. (a) A mixture of ideal gases consists of 3 kg of nitrogen and 5 kg of CO_{2} at a pressure of 3 bar and a temperature of $20^{\circ} \mathrm{C}$. Find (i) mole fraction of each constituent, (ii) the equivalent molecular weight of the mixture, (iii) the equivalent gas constant of the mixture, (iv) the partial pressures and the partial volumes, (v) the volume and density of the mixture, and (vi) the C_{p} and C_{v} of the mixture. Take γ for CO_{2} and N_{2} to be 1.286 and 1.4 respectively.
Or
(b) (i) Derive any two Maxwell's relation.
(ii) Deduce the expression for Joule-Thomson coefficient and draw the inversion curve.
15. (a) Air at $20^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ is mixed adiabatically with air at $40^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ in the ratio of 1 kg of the former with 2 kg of the latter (on dry basis). Find the final condition of air.

> Or
(b) (i) Explain adiabatic saturation with a schematic diagram.
(ii) A sling psychrometer reads $35^{\circ} \mathrm{C}$ DBT and $30^{\circ} \mathrm{C}$ WBT. Find the humidity ratio, relative humidity, dew point temperature, specific volume, and enthalpy of air.

