## Question Paper Code : 13695

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Fifth Semester

Mechanical Engineering

080120028 — COMPOSITE MATERIALS

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

## PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Differentiate between continuous and particulate reinforcement.
- 2. State any two important advantages of composites in compare with metals.
- 3. Graphically represent the following laminates
  - (a)  $\left(45^{\circ}/\overline{90^{\circ}}\right)_{s}$
  - (b)  $\left(0/(\pm 45^{\circ}/60^{\circ}/90^{\circ})_{2}\right)_{s}$
- 4. Differentiate between thermo set and thermoplastics.
- 5. Name any two components which are being made using filament winding method.
- 6. What is the advantage of pre-pregs in compare with fiber reinforced laminas which are made using fiber mats?
- 7. How to calculate the properties of a mixture of two different materials using rule of mixtures?
- 8. State Tsai-Wu Failure criterion applicable for FRP laminates.
  - 9. Why the residual stresses are developed during fabrication?
  - 10. State important applications of ceramic matrix composites.

## PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Differentiate between isotropic, anisotropic and orthotropic materials each with the example. (5)
  - (ii) Write in detail about various applications of composite materials.

(6)

(iii) Why the composite materials are preferred in many applications in compare with the conventional isotropic materials? (5)

Or

- (b) (i) Derive the expressions from the constitutive relations for stiffness matrix of a lamina containing the fibers along x-direction.
  (8)
  - (ii) Derive the expressions for stiffness matrix of a lamina containing the fiber along  $\theta^{i}$  direction measured in anticlock wise w.r.to x-axis. (8)
- 12. (a) Explain in detail of different types of fibres with their applications and properties (Discuss 5-different fibres). (16)

Or

- (b) Explain in detail of different types of matrix materials with their applications and properties (Discuss about polymer matrix materials, Metal matrix materials and ceramic matrix materials).
  (16)
- 13. (a) Explain briefly the hand layup method and also using the compression molding machine for making laminates. Take an example of a laminate of (0/(± 45°/60°/90°)<sub>2</sub>)<sub>s</sub> using epoxy as matrix with glass fiber for explaining the same. (16)

Or

(b) Explain the following methods of making composites in detail with line diagram.

(i) Autoclave method

- (ii) Filament winding method.
- 14. (a) Consider a 4-ply laminate [± 45°]s, with a thickness of 4mm for each layer. Its properties referred to the principal material directions is given as

$$[Q] = \begin{bmatrix} 25 & 0.8 & 0 \\ 0.8 & 3.0 & 0 \\ 0 & 0 & 0.8 \end{bmatrix} GPa.$$

Obtain 'A' and 'D' matrices and explain various characteristic of this laminate with reference to these matrices. (16)

2

13695

(6)

(10)

(b) A carbon/epoxy cross-ply laminate (0/90)<sub>s</sub> consists of unidirectional plies and is subjected to a tensile force  $N_r = 300 N/mm$ . The ply is 0.2 mm thick and elastic properties in kN/mm<sup>2</sup> are

$$E_1 = 150$$
,  $E_2 = 15$ ,  $E_6 = 6$ ,  $v_{12} = 0.3$ 

The ply strengths for the material in N/mm<sup>2</sup> are

$$F_{1T} = 1600$$
,  $F_{1C} = 1300$ ,  $F_{2T} = 60$ ,  $F_{2C} = 260$ ,  $F_{6} = 80$ 

Check whether failure will occur according to maximum stress theory.

(16)

15. (a) Discuss in detail about the following failure theories used for analysis of fiber reinforced laminates.

| (i)   | Maximum stress theory | (5) |
|-------|-----------------------|-----|
| (ii)  | Maximum strain theory | (5) |
| (iii) | Tsai-Hill theory.     | (6) |

(iii) Tsai-Hill theory.

## Or

A rectangular panel with dimensions as shown in Fig.Q 15 (b) is to be (b) designed. Displacement limits are 0.5% of edge dimensions and 1° shear angle. The fiber volume fraction is 0.6. Assume a factor of safety 2.0 on the specified load. Tensile strength of the ply = 1.52 GPa. Ply thickness is 0.127 mm. The laminate is to be sized such that ply strengths are not exceeded and it should not buckle at the design load. (16)

