Reg. No.

Question Paper Code : 51849

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester
Mechanical Engineering

ME 2251/ME 41/ME 1251/080120015/10122 ME 502 - HEAT AND MASS TRANSFER
(Common to Mechanical and Automation Engineering)
(Regulations 2008/2010)
(Common to PTME 2251/10122 ME 502 - Heat and Mass Transfer for Sixth Semester B.E. (Part-Time) Mechanical Engineering - Regulations 2009/2010)

Time : Three Hours
Maximum : 100 Marks
(Use of Heat and Mass Transfer Tables Permitted.)
Answer ALL questions.
PART - A ($\mathbf{1 0 \times 2} \mathbf{2} \mathbf{2 0}$ Marks)

1. List the differences between thermodynamics and heat transfer.
2. State the assumptions on which the Fourier's law of conduction is based.
3. What is the difference between friction factor and friction co-efficient.
4. Why heat transfer co-efficient of natural convection is much less than those in forced convection?
5. What is a compact heat exchanger ? Give applications.
6. Define effectiveness and NTU of a heat exchanger.
7. Define radiation intensity.
8. Differentiate black body and grey body.
9. Enumerate important aspects of Fick's law of diffusion.
10. What is mass transfer ?

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) A copper wire of 10 mm dia. is covered with 10 mm thick of plastic insulation. The plastic insulation is exposed to air at $35^{\circ} \mathrm{C}$ with $\mathrm{h}=8 \mathrm{w} / \mathrm{m}^{2} \mathrm{~K}$. The k for Cu and plastic are $400 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and $0.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. The resistivity is $3 \times 10^{-3} \mathrm{ohms} \mathrm{mm}$. The plastic insulation temperature should not exceed $180^{\circ} \mathrm{C}$. Determine (i) heat transfer rate and current carrying capacity (ii) $\mathrm{q}_{\text {max }}$, maximum current carrying capacity.

OR

(b) A motor body has 500 mm O.D and 400 mm long. It is maintained at $60^{\circ} \mathrm{C} .40$ longitudinal fins with the height of 20 mm and thickness of 8 mm are attached with the body. Thermal conductivity of fin material is $55 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. Heat transfer co-efficient is $23 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Find (i) Area weighed fin efficiency (ii) $\%$ increase in heat transfer due to addition of fins.
12. (a) Air at $20^{\circ} \mathrm{C}, 1 \mathrm{~m} / \mathrm{sec}$ flows over a flat plate of $2 \mathrm{~m} \times 1 \mathrm{~m}$ maintained at $40^{\circ} \mathrm{C}$. Determine (i) boundary layer thickness at 40 cm from leading edge (ii) boundary layer thickness at 2 m from leading edge (iii) localised heat transfer co- efficient at 2 m (iv) average heat transfer co-efficient from leading to 2 m length.

OR

(b) $1000 \mathrm{~kg} / \mathrm{hr}$ of cheese at $150^{\circ} \mathrm{C}$ is pumped through a tube of 7.5 cm dia. After passing through an unheated length of about 50 diameters, it passes through a 1.2 m length of tube maintained at $90^{\circ} \mathrm{C}$. Calculate the heat transfer co-efficient and mean temperature of cheese leaving the heated section. For cheese $\mathrm{k}=1.55 \mathrm{~W} / \mathrm{mK}, \mathrm{C}_{\mathrm{p}}=2.85 \mathrm{~kJ} / \mathrm{kgK}, \rho=1100 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=56400 \mathrm{~kg} / \mathrm{hr}-\mathrm{m}$.
13. (a) In a cross flow heat exchanger, both fluid unmixed, hot fluid with a sp. heat of $23003 / \mathrm{kg} \mathrm{K}$ enters at $380^{\circ} \mathrm{C}$ and leaves at $300^{\circ} \mathrm{C}$. Cold fluid enters at $25^{\circ} \mathrm{C}$ and leaves at $210^{\circ} \mathrm{C}$. Calculate the required surface area of heat exchanger. Take over all heat transfer co-efficient as $750 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Mass flow rate of hot fluid is $1 \mathrm{~kg} / \mathrm{s}$.

OR

(b) A parallel flow heat exchanger is used to cool $4.2 \mathrm{~kg} / \mathrm{min}$ of hot liquid of sp . heat $3.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ at $130^{\circ} \mathrm{C}$. A cooling water of sp. heat $4.18 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ is used for cooling purpose at a temperature of $15^{\circ} \mathrm{C}$. The mass flow rate of cooling water is $17 \mathrm{~kg} / \mathrm{min}$. Calculate the following (i) Outlet temperature of the liqd

Outlet temperature of water (ii) Effectiveness of heat exchanger.
14. (a) The inner sphere of a liquid oxygen container is 400 mm dia., outer sphere is 500 mm dia., both have emissivity 0.05 . Determine the rate of liquid oxygen evaporation at $-183^{\circ} \mathrm{C}$, when the outer sphere temperature is $20^{\circ} \mathrm{C}$. The latent heat of evaporation is $210 \mathrm{~kJ} / \mathrm{kg}$. Neglect losses due to other modes of heat transfer.

OR

(b) A large isothermal enclosure is maintained at 2500 K . Determine (i) emissive power of radiation that emerge from a small aperture on the enclosed surface (ii) wavelength, below which 10% of emission is concentrated (iii) wavelength, above which 10% emission is concentrated (iv) max spectral intensity and corresponding wavelength.
15. (a) Air at $20^{\circ} \mathrm{C}$ flows past a tray full of water with a velocity of $2.5 \mathrm{~m} / \mathrm{sec}$. Calculate the evaporation rate of water in the temperature on the water surface is $15^{\circ} \mathrm{C}$. The tray measures 25 cm along the flow direction and it's width is 40 cm . The moving air has a total pressure of 1.01 bar and the partial pressure of water associated with it is 0.0075 bar. The physical properties of air are density $=$ $1205 \mathrm{~kg} / \mathrm{m}^{3}$, kinematic viscosity $=15.06 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and diffusivity $=$ $0.15 \mathrm{~m}^{2} / \mathrm{hr}$.

OR

(b) CO_{2} and air experience equimolar counter diffusion in a circular tube whose length and dia. are 1 m and 50 mm respectively. The system is at a total pressure of 1 atm and a temperature of $25^{\circ} \mathrm{C}$. The ends of the tube are connected to large chambers in which the species concentrations are maintained at fixed values. The partial pressure of CO_{2} at one end is 190 mm of Hg while at the other end is 95 mm of Hg . Estimate the mass transfer rate of CO_{2} and air through the tube.

